

On provability logic of Heyting Arithmetic

Mojtaba Mojtahedi (Ghent University)

October 19, 2023

2 Intuitionistic Provability Logic: Axiomatization

→ ∃ >

Modal Logic

- Modal logic, extends the language of logic with a unary operator □.
- Intuitively, $\Box A$ means *necessarily* A.
- Its dual operator, \Diamond , usually defined as $\Diamond A := \neg \Box \neg A$.
- $\Diamond A$ means possibly A.
- Expressibility increased.
- Used for various purposes in various disciplines.
- Necessity, Knowledge, Obligation, Belief, Provability.

- 4 回 ト - 4 回 ト

Provability Logic

• \Box as provability.

Provability Logic

- \square as provability.
- Gödel 1933: Based on BHK, interpreted IL in S4.

- + E +

-

Provability Logic

- \Box as provability.
- \bullet Gödel 1933: Based on BHK, interpreted IL in S4.
- IL is Heyting's formalization of a logic based on BHK interpretation.
- Simply, IL is CL without PEM $(A \lor \neg A)$.
- BHK:
 - A proof of A ∨ B is a pair (i, x), either i = 0 and x is a proof of A or i ≠ 0 and x is a proof of B.
 - A proof of A → B is a function which returns a proof of B, given a proof of A.

- 4 同 ト - 4 回 ト - 4 回 ト

Why it is interesting?

From a philosophical point of view, provability logic is interesting because:

- The concept of provability in a fixed theory of arithmetic has a unique and non-problematic meaning, other than concepts like necessity and knowledge studied in modal and epistemic logic. Quine was a proponent of syntactical approach to the modal logic.
- Provability logic provides tools to study the notion of self-reference.
- The ideal balance between *simplicity* and *expressiveness*.

Provability Logic: more precise

$\mathsf{PL}(T) := \text{Provability logic of } T := \{ A \in \mathcal{L}_{\Box} : \forall \sigma \ T \vdash \sigma_{T} A \}$

-

Provability Logic: more precise

$\mathsf{PL}(T) := \text{Provability logic of } T := \{A \in \mathcal{L}_{\Box} : \forall \sigma \ T \vdash \sigma_{_{T}}A\}$

- $\sigma_{\scriptscriptstyle T}(p) := \sigma(p)$ for atomics.
- σ_{τ} commutes with boolean connectives.

$$\bullet \ \sigma_{\scriptscriptstyle T}(\Box A):={\rm Pr}_{\scriptscriptstyle T}(\ulcorner\sigma_{\scriptscriptstyle T} A\urcorner).$$

伺い イヨト イヨト ニヨ

Gödel's Incompleteness Theorem

A consistent theory is incapable of proving its own consistency

Gödel's Incompleteness Theorem

A consistent theory is incapable of proving its own consistency If T is consistent then it can not prove its own consistency

Gödel's Incompleteness Theorem

A consistent theory is incapable of proving its own consistency

If T is consistent then it can not prove its own consistency

 $\neg\Box\bot \rightarrow \neg\Box(\neg\Box\bot) \in \mathsf{PL}(T)$

A B K A B K

- 3

Gödel's Incompleteness Theorem

A consistent theory is incapable of proving its own consistency

If T is consistent then it can not prove its own consistency

$$\neg\Box\bot \rightarrow \neg\Box(\neg\Box\bot) \in \mathsf{PL}(T)$$

 $\Box(\neg\Box\bot)\to\Box\bot$

A B M A B M

Gödel's Incompleteness Theorem

A consistent theory is incapable of proving its own consistency If T is consistent then it can not prove its own consistency

$$\neg\Box\bot \rightarrow \neg\Box(\neg\Box\bot) \in \mathsf{PL}(T)$$

$$\Box(\neg\Box\bot)\to\Box\bot$$

$\Box(\Box \bot \to \bot) \to \Box \bot \quad \text{(Löb's Axiom)}$

The Provability logic of PA is GL

- All theorems of classical propositional logic.
- $\mathsf{K} := \Box(A \to B) \to (\Box A \to \Box B).$
- Löb := $\Box(\Box A \to A) \to \Box A$. Implies $\Box A \to \Box \Box A$.
- modus ponens: $A, A \rightarrow B/B$.
- Necessitation: $A / \Box A$.

• • = • • = • = •

Kripke semantics GL

GL is sound and complete for *finite transitive irreflexive* Kripke models.

$$\mathcal{K} := (W, \sqsubset, \models)$$
$$\mathcal{K}, w \models \Box A \quad \Leftrightarrow \quad \forall u \sqsupset w \, \mathcal{K}, u \models A$$

글 🕨 🖌 글

Σ_1 -substitutions

$$\begin{aligned} \mathsf{PL}_{\Sigma}(T) &:= \Sigma_1 \text{-Provability logic of } T := \\ \{ A \in \mathcal{L}_{\square} : \forall \sigma \in \Sigma_1 \ T \vdash \sigma_T A \} \end{aligned}$$

Theorem (Visser)

$$\mathsf{PL}_{\Sigma}(\mathsf{PA}) = \mathsf{GLC}_{\mathsf{a}} := \mathsf{GL} + p \to \Box p \text{ for atomic } p \text{ 's.}$$

- 4 日 -

-

Reduction of provability logics

Theorem (Ardeshir & M. 2015)

One may reduce the arithmetical completeness of GL to the one for GLCa .

Proof.

Let $\mathsf{GL} \nvDash A$. Then find a Kripke counter model of A. Then transform it to a Kripke model of $\mathsf{GLC}_{\mathsf{a}}$ which refutes $\alpha(A)$ for some propositional substitution α . Thus $\mathsf{GLC}_{\mathsf{a}} \nvDash \alpha(A)$. Finally use arithmetical completeness of $\mathsf{GLC}_{\mathsf{a}}$ and obtain σ such that $\mathsf{PA} \nvDash \sigma \alpha(A)$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Intuitionistic Provability Logic

Question.

What is the provability logic of Intuitionistic Arithmetic (HA)?

12/29 Mojtaba Mojtahedi (Ghent University) University of Birmingham (CS), 17 Oct 2023

.

Provability logic of HA

- A. Visser 1980 first considered this.
- Since then many partial related results where obtained.
- Main source for difficulty: HA-verifiable admissible rules.

$$\frac{\neg A \to (B \lor C)}{(\neg A \to B) \lor (\neg A \to C)}$$

Theorem (Visser 2002)

 $\label{eq:local_def} \textit{Decidability of the letterless fragment of PL(HA)}.$

- 4 目 ト - 4 日 ト

Admissible rules

- $A \vdash_{\tau} B$ iff $\forall \alpha \ (\mathsf{T} \vdash \alpha(A) \Rightarrow \mathsf{T} \vdash \alpha(B)).$
- Example: $\neg A \to (B \lor C) \models_{_{\mathsf{IPC}}} (\neg A \to B) \lor (\neg A \to C).$
- In the provability logic of HA, the above rule reflected as:

$$\Box(\neg A \to (B \lor C)) \to \Box((\neg A \to B) \lor (\neg A \to C)).$$

• Why not classically interesting? $A \models_{a} B$ iff $CPC \vdash A \rightarrow B$.

Admissible rules of IPC

- For every $A \vdash_{\mathsf{\tiny PC}} B$ we have $\Box A \to \Box B$ in $\mathsf{PL}(\mathsf{HA})$.
- What are the admissible rules of IPC? Decidable? (H. Friedman 1975)

(4 個) (4 回) (4 回) (5 回

Admissible rules of IPC

- For every $A \vdash_{\mathsf{PC}} B$ we have $\Box A \to \Box B$ in $\mathsf{PL}(\mathsf{HA})$.
- What are the admissible rules of IPC? Decidable? (H. Friedman 1975) Decidability: Rybakov 1997. Axiomatization: Visser and de Jongh. Completeness proof: Iemhoff 2001.

- - E > - - E >

The system $\llbracket \mathsf{T}, \Delta \rrbracket$

Axioms: Define
$$A \xrightarrow{\Delta} E := \begin{cases} E & : E \in \Delta \\ A \to E & : \text{ otherwise} \end{cases}$$

$$\frac{\mathsf{T} \vdash A \to B}{A \triangleright B} [\mathsf{T}]$$

$$\frac{A = \bigwedge_{i=1}^{n} (E_i \to F_i) \qquad B = \bigvee_{i=n+1}^{n+m} (F_i)}{(A \to B) \rhd \bigvee_{i=1}^{n+m} A \xrightarrow{\Delta} E_i} \mathsf{V}(\Delta)$$

Rules:

$$\frac{A \rhd B}{A \rhd (B \land C)} \xrightarrow{A \rhd C} \operatorname{Conj} \qquad \frac{A \rhd B}{A \rhd C} \xrightarrow{B \rhd C} \operatorname{Cut}$$

$$\frac{A \rhd C}{(A \lor B) \rhd C} \xrightarrow{B \rhd C} \operatorname{Disj} \qquad \frac{A \rhd B}{(D \to A) \rhd (D \to B)} \operatorname{Mont}(\Delta)$$

University of Birmingham (CS), 17 Oct 2023

Admissible Rules of IPC

Theorem (Iemhoff 2001)

 $A \vdash_{\scriptscriptstyle \mathsf{IPC}} B \ \textit{iff} \ \llbracket \mathsf{IPC}, \{\top, \bot\} \rrbracket \vdash A \rhd B.$

Theorem (Visser 2002)

$A \vdash_{_{\!\!\!\mathsf{IPC}}} B \ \textit{iff} \ \llbracket \mathsf{IPC}, \{\top, \bot\} \rrbracket \vdash A \rhd B \ \textit{iff} \ \Box A \to \Box B \in \mathsf{PL}(\mathsf{HA}).$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣ぬゆ

What else in PL(HA)? (Disjunction property)

- DP means that if a disjunction is derivable, then either of them are derivable.
- IPC, IQC and HA has DP.
- $\mathsf{CPC} \vdash p \lor \neg p$ while $\mathsf{CPC} \nvDash p$ and $\mathsf{CPC} \nvDash \neg p$.
- $\Box(A \lor B) \to (\Box A \lor \Box B) \in \mathsf{PL}(\mathsf{HA})?$
- H. Friedman 1975: No!
- D. Leivant 1975: $\Box(A \lor B) \to \Box(\Box A \lor \Box B) \in \mathsf{PL}(\mathsf{HA}).$

• • = • • = •

PL(HA): the axiomatization

Let us define the Leivant's axiom schema as follows:

(Le): $A \rhd \Box A$ for every A.

Theorem (M. 2022)

 $\mathsf{iGLH} := \mathsf{iGL} + \{\Box A \to \Box B : \llbracket \mathsf{iGL}, \Box \rrbracket \mathsf{Le} \vdash A \rhd B\} = \mathsf{PL}(\mathsf{HA}).$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

PL(HA): the axiomatization

Let us define the Leivant's axiom schema as follows:

(Le): $A \rhd \Box A$ for every A.

Theorem (M. 2022)

 $\mathsf{iGLH} := \mathsf{iGL} + \{\Box A \to \Box B : \llbracket \mathsf{iGL}, \Box \rrbracket \mathsf{Le} \vdash A \rhd B\} = \mathsf{PL}(\mathsf{HA}).$

Theorem (Ardeshir & M. 2018)

$$\begin{split} \mathsf{iGLC_aH}_\sigma &:= \mathsf{iGLC_a} + \{\Box A \to \Box B : \llbracket \mathsf{iGLC_a}, \mathsf{atomb} \rrbracket \mathsf{Le} \vdash A \rhd B \} = \mathsf{PL}_\Sigma(\mathsf{HA}) \end{split}$$

イロト イポト イヨト イヨト 二日

Arithmetical soundness

The arithmetical soundness of this system in a more general setting, namely Σ_1 -preservativity, was already known by Visser, de Jongh and Iemhoff (2001).

Arithmetical Completeness of iGLH

- Let $\mathsf{iGLH} \nvDash A$.
- **②** find some *α* s.t. iGLC_aH_{*σ*} \nvDash *α*(*A*).
- **③** use arithmetical completeness of $iGLC_aH_σ$ to find *σ* s.t. $HA \nvDash σα(A)$.

Step 2

- We first need a finite, or at least well-behaved Kripke semantics.
- Iemhoff already provided a semantic for an extension of iGLH in the language with binary modal operator.
- Iemhoff's semantics are not finite.
- At least we failed to use it for the purpose of reduction.
- We provided a finite *mixed* semantic which is a combination of derivability and Kripke-style validity.
- It well fits for preservativity.

- 4 回 ト - 4 回 ト

Preservativity

23/29 Mojtaba Mojtahedi (Ghent University) University of Birmingham (CS), 17 Oct 2023

• • = • • = •

-

Preservativity

Theorem (M. 2022)

 $\llbracket \mathsf{iGL}, \Box \rrbracket \mathsf{Le} \vdash A \rhd B \text{ iff } A \models_{\mathsf{iGL}}^{r} B.$

$\Gamma := \mathsf{C} \downarrow \mathsf{SN}(\Box)$

Roughly, Γ is the set of modal propositions which could be projected to a NNIL-proposition.

Preservativity

Theorem (M. 2022)

$\Gamma := \mathsf{C} \downarrow \mathsf{SN}(\Box)$

Roughly, Γ is the set of modal propositions which could be projected to a NNIL-proposition.

NNIL:

No Nested Implications in the Left.

NNIL-fication

It is a relativised version of Ghilardi's unification for IPC. (1999)

24/29 Mojtaba Mojtahedi (Ghent University) University of Birmingham (CS), 17 Oct 2023

- ∢ ∃ →

Projectivity: standard definition

A is projective iff there is some θ s.t. $\vdash \theta(A)$ and $A \vdash \theta(x) \leftrightarrow x$ for every variable x.

Theorem

Projective unifier is a most general unifier.

Proof.

Consider some α s.t. $\mathsf{IPC} \vdash \alpha(A)$. Then $\alpha(A) \vdash \alpha\theta(x) \leftrightarrow \alpha(x)$. This means that $\alpha\theta = \theta$, hence θ is more general than α .

Theorem (Ghilardi 1999)

For every A there is a best approximation of A by finite disjunctions of projective propositions $\bigvee \Pi(A)$. Moreover

$$A \mathrel{\mathop{\rightarrowtail}}_{\operatorname{ipc}} \bigvee \Pi(A)$$

NNIL(par)-projectivity

A is NNIL(par)-projective if there is some θ and $B \in NNIL(par)$ s.t. IPC $\vdash \theta(A) \leftrightarrow B$ and $A \vdash_{\mathsf{IPC}} \theta(x) \leftrightarrow x$ for every var x.

Theorem (M. 2022)

For every A there is a best approximation of A by finite disjunctions of projective propositions $\bigvee \Pi(A)$. Moreover

$$A \mathrel{\mathop{\longmapsto}\limits_{\rm ipc}}^{\rm N(par)} \, \bigvee \Pi(A)$$

Theorem (M. 2022)

$$A \models_{\text{\tiny IPC}}^{\text{\tiny N(par)}} B \text{ iff } \llbracket \text{IPC}, \text{\tiny NNIL}(\text{par}) \rrbracket \vdash A \rhd B.$$

$\mathsf{iGLH}(\Gamma,\mathsf{T})$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Mixed semantic for $iGLH(\Gamma, T)$

28 / 29 Mojtaba Mojtahedi (Ghent University) University of Birmingham (CS), 17 Oct 2023

.

Mixed semantic for $\mathsf{iGLH}(\Gamma,\mathsf{T})$

- Roughly speaking, a mixed semantic is a usual Kripke model for intuitionistic modal logic, which is augmented by a family of propositions $\{\varphi_w\}_{w \in W}$ with
 - $\varphi_w \in \Gamma$,
 - $\mathcal{K}, w \Vdash \phi_w$,
 - $\mathcal{K}, w \Vdash \Box A$ iff for every $u \sqsupset w$ we have $\mathsf{T}, \Delta_w, \varphi_u \vdash A$.

Thanks For Your Attention

29 / 29 Mojtaba Mojtahedi (Ghent University) University of Birmingham (CS), 17 Oct 2023