

Kripke semantics augmented with derivability

Mojtaba Mojtahedi (Ghent University)

January 17, 2023

1/26 Mojtaba Mojtahedi (Ghent University) Trends in Proof Theory 2023

GL and its Classical models

- $\mathsf{GL} := \mathsf{K} + \Box (\Box A \to A) \to \Box A$
- $\mathcal{K} := (W, \sqsubset, \models)$:
 - (W, \Box) transitive and conversely well-founded
 - $\mathcal{K}, w \models \Box A$ iff for all $u \sqsupset w$ we have $\mathcal{K}, u \models A$.
- GL is sound and complete for finite Kripke models.
- A well-known benefit of fmp: Solovey's proof of arithmetical completeness of GL for provability interpretations.

Provability semantics

$$\mathcal{K} = (W, \sqsubset, \models, \{\Gamma_w\}_{w \in W})$$

- (W, \sqsubset) is transitive and conversely well-founded
- $A \in \Gamma_w$ implies $\mathcal{K}, w \models A$
- $\mathcal{K}, w \models \Box A \text{ implies } \Box A \in \Gamma_w$

$$\mathcal{K}, w \models \Box A \quad \Leftrightarrow \quad \forall \, u \sqsupset w(\Gamma_u \vdash_{\mathsf{GL}} A)$$

Provability semantics

$$\mathcal{K} = (W, \sqsubset, \models, \{\Gamma_w\}_{w \in W})$$

- (W, \sqsubset) is transitive and conversely well-founded
- $A \in \Gamma_w$ implies $\mathcal{K}, w \models A$
- $\mathcal{K}, w \models \Box A \text{ implies } \Box A \in \Gamma_w$

$$\mathcal{K}, w \models \Box A \quad \Leftrightarrow \quad \forall \, u \sqsupset w(\Gamma_u \vdash_{\mathsf{GL}} A)$$

Circular definition?

Theorem

Let $\mathcal{K} = (W, \sqsubset, \models, \{\Gamma_w\}_{w \in W})$ be a provability semantic. Then $\mathcal{K} \models \mathsf{GL}$.

Proof.

We use induction on the proof $\mathsf{GL} \vdash A$ and show $\mathcal{K}, w \models A$.

- $\mathcal{K}, w \models \Box(\Box A \to A) \to \Box A$. Let $\mathcal{K}, w \models \Box(\Box A \to A)$. Hence for every $u \sqsupset w$ we have $\Gamma_u \vdash_{\mathsf{GL}} \Box A \to A$. By induction on $u \sqsupset w$ we may show $\mathcal{K}, u \models \Box A$ and hence $\Gamma_u \vdash_{\mathsf{GL}} A$.
- Necessitation. Let $\mathsf{GL} \vdash \Box A$ derived by $\mathsf{GL} \vdash A$. Hence for every $u \sqsupset w$ we have $\Gamma_u \vdash_{\mathsf{cl}} A$ and thus $\mathcal{K}, w \models \Box A$.

Every Kripke model $\mathcal{K}_0 = (W, \sqsubset, \models)$ can be considered as a provability semantic. $\mathcal{K} = (W, \sqsubset, \models, \{\Gamma_w\}_{w \in W})$ with

$$\Gamma_w := \{A : \mathcal{K}_0, w \models A\}.$$

Using induction on $w \in W$ one may show

 $\mathcal{K}_0, w \models A \quad \text{iff} \quad \mathcal{K}, w \models A$

• • = • • = •

As a consequence of the previous example:

Theorem

GL is complete for provability semantics.

What is extra benefit of provability semantics?

Complicated axiom-schemas show up:

- $\Box \neg \neg \Box A \rightarrow \Box \Box A$. A generalization of these axioms, are called Visser axiom schemas.
- $\Box(A \lor B) \to \Box(\Box A \lor B)$. Leivant axiom.

Frame property for such weird axioms?

9/26 Mojtaba Mojtahedi (Ghent University) Trends in Proof Theory 2023

Frame property for such weird axioms?

Rosalie Iemhoff proves soundness-completess for some Kripke semantics.

Regrettably, such Kripke models are infinite.

Provability semantics for intuitionistic provability logics

- We defined provability semantics for intuitionistic provability logics.
- We showed the finite model property and decidability for the provability logic of HA.
- Via such finite provability semantics, we were able to prove the arithmetical completeness result for the provability logic of HA.

[1] Mojtahedi, Mojtaba. "On Provability Logic of HA." arXiv preprint arXiv:2206.00445 (2022).

• As one expects, the intuitionistic provability semantics, has an extra relation \preccurlyeq for the intuitionstic \rightarrow .

$$\mathcal{K} = (W, \preccurlyeq, \sqsubset, \Vdash, \{\Gamma_w\}_{w \in W})$$

Inruitionistic provability semantics II

- We restrict Γ_w in the definition, for technical reasons.
- Given two sets Δ and Γ of proposuitions and $\varphi_w \in \Gamma$ such that Δ and Γ are closed under Δ -conjunctions ($B \in \Delta$ and $C \in \Gamma$ implies $B \wedge C \in \Gamma$), we assume

$$\Gamma_w := \overbrace{\{A \in \Delta : \mathcal{K}, w \models A\}}^{\Delta_w} \cup \{\varphi_w\}$$

- Thus Γ_w includes all locally true propositions in Δ together with a single proposition $\varphi_w \in \Gamma$ which might not be in Δ .
- \bullet Also we consider the general case T instead of $\mathsf{GL}:$

$$\mathcal{K}, w \Vdash \Box A \quad \text{iff} \quad \forall \, u \sqsupset w \; (\Gamma_w \vdash_{\tau} A)$$

Definition

Such models are called $(\Delta, \Gamma, \mathsf{T})$ -semantics, and annotated as

$$\mathcal{K} = (W, \preccurlyeq, \sqsubset, \Vdash, \{\varphi_w\}_{w \in W})$$

Whenever $\Gamma = \Delta$ we simply say that \mathcal{K} is a (Γ, T) -semantic. In this case it doesn't matter how $\varphi_w \in \Gamma$ are defined.

The proof of following theorem is straightforward:

Theorem

The Σ_1 -provability logic of HA is sound and complete for (SNNIL, iGLC_a)-models.

Neverthless, the following theorem is not trivial:

Theorem

The provability logic of HA is sound and complete for $(SNNIL(\Box), C\downarrow SN(\Box), iGL)$ -models.

One may use the previous two results to reduce arithmetical completeness to the one for Σ_1 -substitutions.

• $A \models B$ iff $\forall E \in \Gamma(\mathsf{T} \vdash E \to A \Rightarrow \mathsf{T} \vdash E \to B).$

▲圖▶ ▲屋▶ ▲屋▶

臣

- Intuitionistic provability, is closely related to admissibility and also preservativity.
- Rosalie Iemhoff and Albert Visser showed such tight interactions between them.
- In the context of preservativity, weird axioms of the intuitionistic provability, gets more elegant form.
- Rosalie Iemhoff proves the completeness of several preservativity logics for Kripke models. Again the Kripke models are mainly infinite.
- Our provability semantics, can be extended to preservativity as well.

For a $(\Delta, \Gamma, \mathsf{T})$ -semantic \mathcal{K} , we extend $\mathcal{K}, w \Vdash A$ to the language with binary modal operator \triangleright :

$$\begin{split} \mathcal{K}, w \Vdash B \rhd C & \Leftrightarrow \\ \forall u \sqsupset w \; \forall E \in \Delta \; (\Delta_u, \varphi_u \vdash_{\mathsf{r}} E \to B \text{ implies } \Delta_u, \varphi_u \vdash_{\mathsf{r}} E \to C), \end{split}$$

Note that in the above definition, B and C are considered in usual modal language. An extension to the full language of preservatitivity is still missing.

Theorem

 $\underset{\Gamma}{\overset{\scriptstyle{\vdash}}{\underset{\Gamma}}} is \ sound \ for \ (\Delta, \Gamma, \mathsf{T}) \text{-}semantics, \ i.e. \ given \ such \ preservativity \\ semantics \ \mathcal{K}, \ we \ have \ \mathcal{K} \Vdash A \triangleright B \ whenever \ A \models B.$

Proof.

Let $A \not\models_{\Gamma} B$ and $\mathcal{K} = (W, \preccurlyeq, \sqsubset, V, \{\varphi_w\}_{w \in W})$ be a $(\Delta, \Gamma, \mathsf{T})$ -semantics and $w \sqsubset u \in W$ and $E \in \Delta$ such that $\varphi_u, \Delta_u, E \vdash_{\tau} A$. Hence there is a finite set $\Phi_u \subseteq \Delta_u$ such that $\Phi_u, E, \varphi_u \vdash A$. By conjunctive closure condition, we have $\bigwedge \Phi_u \land E \land \varphi_u \in \Gamma$ and thus by $A \not\models_{\Gamma} B$ we get $\Phi_u, E, \varphi_u \vdash_{\tau} B$. Hence we have $\varphi_u, \Delta_u, E \vdash_{\tau} B$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- B is a (Γ, T) -lb for A if:
- B is the (Γ, T) -glb for A, if for every (Γ, T) -lb B' for A we have $\mathsf{T} \vdash B' \to B$.
- Up to T-provable equivalence relation, such glb is unique and we annotate it as $\lfloor A \rfloor_{\Gamma}^{\mathsf{T}}$.
- (Γ, T) is downward compact, if every $A \in \mathcal{L}_{\Box}$ has a (Γ, T) -glb $\lfloor A \rfloor_{\Gamma}^{\mathsf{T}}$.
- If $\lfloor A \rfloor_{\Gamma}^{\mathsf{T}}$ can be effectively computed, we say that (Γ, T) is recursively downward compact.

Theorem

(NNIL, IPC) is recursively downward compact.

→

크

(Γ, T) -glb and $\models_{\Gamma}^{\mathsf{T}}$

Theorem

B is the (Γ, T) -glb for A iff

- $B \in \Gamma$,
- $\mathsf{T} \vdash B \to A$,
- $A \models_{\mathbb{F}} B.$

Hence we have $A \stackrel{\mathsf{T}}{\approx} \lfloor A \rfloor_{\Gamma}^{\mathsf{T}}$.

Corollary

If $[A]_{\Gamma}^{\mathsf{T}}$ exists, then for every $B \in \mathcal{L}_{\Box}$ we have

$$\mathsf{T} \vdash \left\lfloor A \right\rfloor_{\Gamma}^{\mathsf{T}} \to B \quad i\!f\!\!f \quad A \models_{\Gamma}^{\mathsf{T}} B.$$

▶ < 문 ► < E ► -

Theorem

Forcing relationship for finite $(\Delta, \Gamma, \mathsf{T})$ -semantic is decidable whenever (Δ, T) is recursively downward compact and T is sound.

Proof.

Let $\mathcal{K} = (W, \preccurlyeq, \sqsubset, V, \varphi)$ be a $(\Delta, \Gamma, \mathsf{T})$ -semantic. We show decidability of $\mathcal{K}, w \Vdash A$ by double induction on W ordered by \Box and complexity of A.

• $A = \Box B$. It is enough to decide $\Delta_u \vdash_{\tau} \varphi_u \to B$ for every $u \sqsupset w$. Since (Δ, T) is recursively downward compact, one may effectively compute $\lfloor \varphi_u \to B \rfloor_{\Delta}^{\mathsf{T}}$. By definition of $\lfloor . \rfloor_{\Gamma}^{\mathsf{T}}$ it is enough to decide $\Delta_u \vdash_{\tau} \lfloor \varphi_u \to B \rfloor_{\Delta}^{\mathsf{T}}$ which is equivalent to $\mathcal{K}, u \Vdash \lfloor \varphi_u \to B \rfloor_{\Delta}^{\mathsf{T}}$. Then use induction hypothesis. \Box

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Future works (I had some failed attempts)

Question

A finite provability semantics for the Iemhoffs prservativity logic iPH is desired.

Answering above question is important because it may casue a solution to a conjecture posed by Iemhoff for arithmetical completeness of iPH.

- Interpretability, is tightly related to preservativity. Currently there is some Kripke-style sematic for the interpretability, invented by Veltman. Is it possible to adapt provability semantics for interpretability?
- Use provability semantics for the study of admissibility and preservativity in classical GL.

Thanks For Your Attention