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Propositional non-modal language

L0 : ∨,∧,→, par, var

var and par are countably infinite sets of atomics and
⊤,⊥ ∈ par.

¬A := A → ⊥.

atom := par ∪ var

par stands for Σ1-substitutions, var for arbitrary.

For a propositional substitution θ, by default θ(p) := p for
every p ∈ par.

L0(X) indicates the set of all Boolean combinations of
propositions in the set X.
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Modal language

L� := L0 +� and 2A := ⊤�A and L2 := L0 +2

� is a binary modal operator.

We usually consider A�B for preservativity.

B := {2A : A ∈ L2}.
parb := par ∪ B.

atomb := atom ∪ B.

2. A := A ∧2A.
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Logics

K: 2(A → B) → (2A → 2B).

4: 2A → 22A.

L: 2(2A → A) → 2A. (The Löb’s axiom)

Cp: p → 2p for every p ∈ par.

Ca: a → 2a for every a ∈ atom.

Given a logic L and axiom-schemata X1, . . . ,Xn, the logic
LX1 . . .Xn is defined as L plus the axioms X1, . . . ,Xn. Then we
define following modal logics:

i: IPC plus necessitation and Cp.

iGL := iK4L.
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Propositional substitutions

θ(x) is a proposition in the language L� for every x ∈ var.

θ(p) = p for every p ∈ par.

θ(B ◦ C) = θ(B) ◦ θ(C) for every ◦ ∈ {∨,∧,→,�}.
Given θ, define θ̂ same as θ except for boxed propositions for
which θ̂ operates as identity:

θ̂(A�B) := A�B and hence θ̂(2A) := 2A.
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Heyting Arithmetic

The Heyting arithmetic is defined as the intuitionistic fragment
of first-oder Peano Arithmetic PA.
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Arithmetical substitutions iPH

A function α on atom such that α(a) is a first-order
arithmetical sentence for every a ∈ atom and α(a) ∈ Σ1 for
every a ∈ par and α(⊥) = ⊥ and α(⊤) = ⊤. Moreover α is
called a Σ1-substitution if α(a) ∈ Σ1 for every a ∈ atom.

α
HA
(a) := α(a) for every a ∈ atom, and α

HA
(⊥) = ⊥.

α
HA

commutes with boolean connectives: ∨,∧ and →.

α
HA
(A�B) is defined as an arithmetization of

Σ1-preservativity: For every E ∈ Σ1,

if HA ⊢ E → α
HA
(A) then HA ⊢ E → α

HA
(B).

α
HA
(2A) = an arithmetization of “A is provable in HA”.
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PL2(HA), the provability logic of HA is defined as

{A ∈ L2 : HA ⊢ α
HA
(A) for every arithmetical substitution α}

PL�(HA), the Preservativity logic of HA is defined

{A ∈ L� : HA ⊢ α
HA
(A) for every arithmetical substitution α}

Similarly one may define PL2
Σ
(HA) and PL�

Σ
(HA) as provability

and preservativity logics for Σ1-substitutions.
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PL2(HA) ⊬ 2(A ∨B) → (2A ∨2B), Myhill [1973];
Friedman [1975]

PL2(HA) ⊢ 2(A ∨B) → 2(2. A ∨ 2. B), in which 2. A is a
shorthand for A ∧2A, Leivant [1975]

PL2(HA) ⊢ 2¬¬2A → 22A and
PL2(HA) ⊢ 2(¬¬2A → 2A) → 2(2A ∨ ¬2A), Visser
[1981, 1982]

Decidability of letterless fragment of PL2(HA). Visser
[2002]

Axiomatization and decidability of PL2
Σ
(HA). Ardeshir and

Mojtahedi [2018]; Visser and Zoethout [2019]

Axiomatization and decidability of PL2
Σ
(HA) relative in PA

and N. Mojtahedi [2021]
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The following translation, is some variant of the Gödel’s
celebrated translation for the embedding of IPC in S4 [Gödel,
1933].

Definition

For every proposition A ∈ L2 define A2 inductively as follows:

A2 := 2. A, for A ∈ var.

A2 := A for A ∈ parb.

(B ◦ C)2 := B2 ◦ C2. for ◦ ∈ {∨,∧}.
(B → C)2 := 2. (B2 → C2).
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A ∈ L2 is called self complete if there is some B ∈ L2 such
that A = B2:

S := {B2 : B ∈ L2}.

A is called T-complete if T ⊢ A → 2A:

C
T
:= {A ∈ L2 : T ⊢ A → 2A}.

If T ⊇ iK4 we have S ⊆ C
T
.

We may omit the superscript T in the notation C
T
and

simply write C.
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A Kripke model for the intuitionistic modal logic, is a
combination of a Kripke model for intuitionistic logic and the
classical modal logic. Let K = (W,≺,<, V ):

W ̸= ∅.
(W,≺) is a partial order (transitive and irreflexive). We
write ≼ for the reflexive closure of ≺.

V is the valuation on atomics, i.e. V ⊆ W × atom.

w ≼ u and w V a implies u V a for every w, u ∈ W and
a ∈ atom.

(≼;<) ⊆ <, i.e. w ≼ u < v implies w < v. This condition is
assumed to ensure that the previous property holds for all
modal propositions and not only for a ∈ atom.
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V is extended to all modal propositions:

K, w ⊩ a iff w V a, for a ∈ atom.

K, w ⊩ A ∧B iff K, w ⊩ A and K, w ⊩ B.

K, w ⊩ A ∨B iff K, w ⊩ A or K, w ⊩ B.

K, w ⊩ A → B iff for every u ≽ w if we have K, w ⊩ A then
K, w ⊩ B.

K, w ⊩ A�B iff for every u = w with K, u ⊩ A we have
K, w ⊩ B.

K, w ⊩ 2A iff for every u = w we have K, w ⊩ A.
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We say that u is a successor of w if w < u.

We say that u is a predecessor of w if u < w.

We say that u is above w if w ≼ u.

We say that u is beneath w if u ≼ w.

We say that u is generated by w if w (< ∪≼) u.

S indicates the reflexive transitive closure of S.
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iGL/iGLCa General Completeness

Theorem

iGL is sound and complete for good Kripke models. Also iGLCa

is sound and complete for good Ca Kripke models.
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The class of No Nested Implications to the Left, NNIL
formulae, for the nonmodal language L0, was introduced in
[Visser et al., 1995], and more explored in [Visser, 2002].

Visser et al. [1995] chracterize the NNIL via Kripke
semantics.

A ∈ NNIL and A ∈ NI for every A ∈ atomb.

B ◦C ∈ NNIL if B,C ∈ NNIL. Also B ◦C ∈ NI if B,C ∈ NI.
(◦ ∈ {∨,∧})
B → C ∈ NNIL if B ∈ NI and C ∈ NNIL.
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One of the most interesting features of the Gödel-Löb
axiom, is the fixed-point theorem.

It is the propositional remainder of the Gödels
diagnalization lemma.

It says that if x only appears in the scope of 2 in A, then
there is some D such that GL ⊢ D ↔ A[x : D]. [Smoryński,
1985]

One may generalize the same fixed-point theorem to iGL.
[Iemhoff et al., 2005]

It is well-known that one may generalize this fixed-point
theorem to a simultaneous version.
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1st-red

Theorem

Let
#”

E := {E1, . . . , Em} and #”a = {a1, . . . , am} such that every
occurrences of ai in Ej is in the scope of some 2. Then there is
a substitution τ which is the simultaneous fixed point of #”a with
respect to

#”

E in iGL, i.e.

iGL ⊢ τ(Ei) ↔ τ(ai) for every 1 ≤ i ≤ m.
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Unification

Unification problem (in propositional Logic L) asks for
substitutions θ which unify A, i.e. L ⊢ θ(A).

More ambitiously: describe the set of all unifiers for A.

θ ≤ γ iff there is some λ s.t. L ⊢ θ(x) ↔ λγ(x).

Classical logic: every unifiable proposition has a most
general unifier.

If θ is a unifier of A then χ
θ
is a most general one:

χ
θ
(x) := (A ∧ x) ∨ (¬A ∧ θ(x))
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χ
θ
is a unifier indeed:

A ⊢ χ
θ
(A) ↔ ⊤ and ¬A ⊢ χ

θ
(A) ↔ ⊤.

χ
θ
is more general than every other unifier γ:

A ⊢ χ
θ
(x) ↔ x =⇒ γ(A) ⊢ γχ

θ
(x) ↔ γ(x)

Definition

A is called projective (in L) if there is some unifier θ for A
s.t. for every x ∈ var:

A ⊢L θ(x) ↔ x
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x ∨ ¬x does not have a most general unifier in IPC.

Ghilardi [1999] answered to the unification problem for
L = IPC and par = ∅ (Elementary unification or
E-unification).

Ghilardi [1999] first characterized projectives via Kripke
semantics.

Then with the aid of projective approximations he proved
that IPC is finitary, i.e. every unifiable A has a finite set of
unifiers which are more general than every unifier of A.
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Projectivity: relativised

Instead of unification (⊤-fication) we consider Γ-fication for
Γ ⊆ L0(par).

This means that we ask for all θ’s such that L ⊢ θ(A) ∈ Γ,
i.e. L ⊢ θ(A) ↔ E for some E ∈ Γ.

In this setting, we say that A is Γ-projective iff there is a
Γ-fier θ for A which is projective:

A ⊢L θ(x) ↔ x

↓Γ := the set of all Γ-projective propositions.
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In the first of two consecutive manuscripts on provability logic
of HA we considered the case Γ = NNIL(par) and L = IPC. We
followed Ghilardi [1999] to

characterize NNIL(par)-projectivity via Kripke semantics,

and then for a given A, compute a finite
NNIL(par)-projective approximation.
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Admissible rules

The problem of admissibility (Friedman 1975) asks for the
characterization and decidability of all inference rules A/B
which are admissible to the logic L, i.e. for every
substitution θ if we have L ⊢ θ(A) then L ⊢ θ(B).

The classical case is trivial: A/B is admissible iff A → B is
derivable.

¬x → (y ∨ z)/(¬x → y) ∨ (¬x → z) is admissible to IPC.
[Harrop, 1960]

Rybakov [1987] showed that admissibility for IPC is
decidable.
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Admissible rules of IPC

de Jongh and Visser provided a base for all known
admissible rules of IPC and conjectured it to be complete.

Iemhoff [2001b] with the aid of [Ghilardi, 1999] proved the
completeness of the base.
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Relative admissibility

In the first manuscript, we considered a relative version of
admissibility.

We say that A/B is admissible relative in Γ if

∀E ∈ Γ ∀ θ ( ⊢ θ(E → A) =⇒ ⊢ θ(E → B)).

Following the tools and methods in [Iemhoff, 2001b] we
found a base for the admissibility relative in NNIL(par).
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NNIL(par)-projective approximation (↓N(2)∨, iGL) rsdc

Theorem

Given A ∈ L0, there is a finite set Π ⊆ ↓N(par) such that

1 IPC ⊢
∨
Π → A.

2 [[IPC, par]] ⊢ A�
∨
Π.

3 Π is computable as a function of A.
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iPH

[[T,∆]] has following axioms and rules:

Ax : A�B, for every T ⊢ A → B.

V(∆) : B → C �
∨n+m

i=1 {B}∆(Ei), in which B =
∧n

i=1(Ei → Fi)
and C =

∨n+m
i=n+1Ei, and

A�B A� C Conj
A�B ∧ C

A�B B � C
Cut

A� C

B �A C �A Disj
B ∨ C �A

A�B (C ∈ ∆)
Mont(∆)

C → A� C → B

{A}∆(B) :=

{
B : B ∈ ∆

A → B : otherwise
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Elevating projectivity to the modal language I

Let A ∈ L2 and Γ ⊆ L0(parb). A substitution θ is called
A-projective (in T) if

For all atomic a we have T ⊢ A → (a ↔ θ(a)). (3.1)

A substitution θ, is a Γ-fier for A ∈ L2 (notation A ↠θ
T

Γ), if

T ⊢ θ̂(A) ∈ Γ i.e. θ̂(A) is T-equivalent to some A′ ∈ Γ.

θ is a unifier for A if it is {⊤}-fier for A.
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Elevating projectivity to the modal language II

We say that a substitution θ projects A to Γ in T
(notation: A ↣↠θ

T
Γ) if θ is A-projective in T and A ↠θ

T
Γ.

We say that A is Γ-projective in T if there is some θ such
that A ↣↠θ

T
Γ.

↓TΓ indicates the set of all propositions which are
Γ-projective in T.

A is projective, if it is {⊤}-projective.
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Some notations on sets of propositions

We write X1 . . .Xn for X1 ∩ . . . ∩ Xn.

Γ∨ := {
∨
∆ : ∆ ⊆fin Γ and ∆ ̸= ∅}.

Γ(X) := Γ ∩ L0(X) and Γ(2) := Γ(parb).

↓TΓ := the set of all Γ-projective propositions in the logic T.

(.)∨ has the lowest precedence and ↓(.) has the second
lowest precedence. This means that

↓SN(2)∨ := (↓(SN(2)))∨ and C↓SN(2)∨ := (C(↓(SN(2))))∨.
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Definitions of admissibility and preservativity

A ∼T
Γ
B iff for every substitution θ and C ∈ Γ:
T ⊢ θ̂(C → A) ⇒ T ⊢ θ̂(C → B).

A |≈T
Γ
B iff ∀E ∈ Γ(T ⊢ E → A ⇒ T ⊢ E → B).

θ̂ is same as θ on the non-modal language and θ̂(2B) := 2B.
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∼T
Γ
⊆ |≈T

↓Γ
|≈iGL↓N(2)

|≈iGL↓SN(2)

By definition it can be inferred that A ∼T
Γ
B implies A |≈T

Γ
B,

however the converse may not hold. As a counterexample let A
and B two different variables and Γ := {⊤} and T = IPC. Then
we have A |≈T

Γ
B and not A ∼T

Γ
B.

Theorem

Let T be a logic which is closed under outer substitutions. Then
A ∼T

Γ
B implies A |≈T

↓Γ
B.
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Some more notations

PT := {A : T ⊢ A → B ∨ C ⇒ T ⊢ A → B or T ⊢ A → C}.

Γ∨ := {
∨
∆ : ∅ ≠ ∆ ⊆fin Γ}.

We may omit T from notations PT and CT.
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[T] SN(2)-rsdc Projec-Res

Given a logic T, the logic [T] proves statements A�B for A and
B in the language of T and has the following axioms and rules:

Aximos

Ax : A�B, for every T ⊢ A → B.

Rules

A�B A� C Conj
A�B ∧ C

A�B B � C
Cut

A� C

These axioms and rule are not interesting, because [T] ⊢ A�B
iff T ⊢ A → B.
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Extra axioms for preservativity and admissibility

Le: A�2A for every A ∈ L2.

Le
−
: A�2A for every A ∈ L0(parb).

A: A� θ̂(A), for every substitution θ.

V(∆) : B → C �
∨n+m

i=1 {B}∆(Ei), in which B =
∧n

i=1(Ei → Fi)
and C =

∨n+m
i=n+1Ei, and

{A}∆(B) :=

{
B : B ∈ ∆

A → B : otherwise

B �A C �A Disj
B ∨ C �A

A�B (C ∈ ∆)
Mont(∆)

C → A� C → B
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Prime factorization |≈iGLCa

SN
|≈iGL↓N(2)

|≈iGL↓SN(2)
|≈iGL
C↓SN(2)

|≈iGL
SN(2)

[[T,∆]] := [T] + Disj +Mont(∆) + V(∆),

[[T,∆]]Le := [[T,∆]] + Le and [[T,∆]]Le
−
:= [[T,∆]] + Le

−
.

Lemma

T ⊆ T′ and ∆ ⊆ ∆′ implies [[T,∆]] ⊆ [[T′,∆′]].

Lemma

|≈T
Γ
= |≈T

Γ
∨ and ∼T

Γ
= ∼T

Γ
∨ .
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Intuitionistic submodel property

Given two Kripke models K = (W,≼,<, V ) and
K′ = (W ′,≼′,<′, V ′), we say that K′ is an intuitionistic
submodel of K (notation K′ ≤ K) iff W = W ′, < = <′, V = V ′

and ≼′ ⊆ ≼. A class K of Kripke models has intuitionistic
submodel property, if K′ ≤ K ∈ K implies K′ ∈ K . A modal
logic T is said to have intuitionistic submodel property iff it is
sound and complete for some class K of good Kripke models
with intuitionistic submodel property.
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General soundness: preservativity |≈iGLCa

SN
|≈iGL
C↓SN(2)

|≈iGL
SN(2)

Theorem (Soundness)

[T] is sound for preservativity interpretations, i.e. [T] ⊢ A�B
implies A |≈T

Γ
B for every set Γ of propositions and every logic T.

Moreover

if Γ is T-complete, then Le is sound,

if Γ is T-prime, then Disj is also sound,

if Γ is closed under ∆-conjunctions, then Mont(∆) is
sound.

if T has intuitionistic submodel property and Γ ⊆ NNIL and
∆ ⊆ atomb then V(∆) is sound.

if Γ ⊆ L0(parb) and T is closed under outer substitutions,
then A is also sound.
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General soundness: admissibility |≈iGL↓N(2)
|≈iGL↓SN(2)

Theorem (Soundness)

[T] is sound for admissibility interpretations, i.e. [T] ⊢ A�B
implies A ∼T

Γ
B for every set Γ of propositions and every logic T

which is closed under outer substitutions. Moreover

if Γ is T-complete, then Le
−
is sound,

if Γ is T-prime, then Disj is also sound.

if Γ is closed under outer substitutions of ∆-conjunctions,
i.e. A ∈ Γ and B ∈ ∆ implies A ∧ θ̂(B) ∈ Γ (up to
T-provable equivalence relation), then Mont(∆) is sound.

if T has intuitionistic submodel property and Γ ⊆ NNIL and
∆ ⊆ parb then V(∆) is sound.
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Greatest lower bound (glb)

B is a (Γ,T)-lb for A if:
1 B ∈ Γ,
2 T ⊢ B → A.

B is the (Γ,T)-glb for A, if for every (Γ,T)-lb B′ for A we
have T ⊢ B′ → B.

Up to T-provable equivalence relation, such glb is unique
and we annotate it as ⌊A⌋T

Γ
.

(Γ,T) is downward compact, if every A ∈ L2 has a

(Γ,T)-glb ⌊A⌋T
Γ
.

If ⌊A⌋T
Γ
can be effectively computed, we say that (Γ,T) is

recursively downward compact.
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(SN, iGLCa) is rsdc

Theorem (Visser [2002])

(NNIL, IPC) is recursively downward compact.

⌊A⌋IPC
NNIL

is named A∗ in [Visser, 2002], the so called Visser’s NNIL
algorithm.

Question

One may similarly define the notion of least upper bounds and
upward compactness. Does downward compactness imply
upward compactness?
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(Γ,T)-glb and |≈T
Γ

Theorem

B is the (Γ,T)-glb for A iff

B ∈ Γ,

T ⊢ B → A,

A |≈T
Γ
B.

Hence we have A |≈T
Γ
⌊A⌋T

Γ
.

Corollary

If ⌊A⌋T
Γ
exists, then for every B ∈ L2 we have

T ⊢ ⌊A⌋T
Γ
→ B iff A |≈T

Γ
B.
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Question

The glb may be expressed via preservativity relation |≈T
Γ
. One

may think of its twin sister which best suites for lub’s:

A
∗|≈T

Γ
B iff ∀E ∈ Γ(T ⊢ A → E ⇒ T ⊢ B → E).

We ask for an axiomatization for
∗|≈T

Γ
when we let T = IPC and

Γ = NNIL.
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Normal forms

Define Γ-NF0 as the set of propositions B ∈ L2 with either
B ∈ Γ or 2. B ∈ Γ. Then define the set Γ-NF of propositions in
Γ-Normal Form as follows:

Γ-NF := {A ∈ L2 : ∀2B ∈ sub(A) B ∈ Γ-NF0}.
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Iterating glb’s nested inside 2 General Completeness

We say that (Γ,T) is (recursively) strong downward compact, if
it is (recursively) downward compact and for every

2B ∈ sub(⌊A⌋T
Γ
) either we have 2B ∈ sub(A) or B ∈ Γ-NF0. We

also inductively define ⌊⌊A⌋⌋T
Γ
:

⌊⌊a⌋⌋T
Γ
= a for every atomic a.

⌊⌊ ⌋⌋T
Γ
commutes with {∨,∧,→}.

⌊⌊2A⌋⌋T
Γ
:= 2⌊⌊⌊A⌋⌋T

Γ
⌋T
Γ
. H(Γ,T) .

Lemma

If (Γ,T) is strong downward compact and T ⊇ iK4, then for

every A ∈ L2 we have ⌊⌊A⌋⌋T
Γ
∈ Γ-NF and H(Γ,T) ⊢T A ↔ ⌊⌊A⌋⌋T

Γ
.
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Extension property

A class M of rooted Kripke models is said to has extension
property if for every finite set K ⊆ M there is some finite set
of rooted Kripke models K ′ such that a variant of

∑
(K ,K ′)

belongs to M .
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Prime factorization |≈iGLCa

SN
|≈iGL↓N(2)

|≈iGL↓SN(2)
|≈iGL
C↓SN(2)

|≈iGL
SN(2)

Before we continue with the axiomatization and decidability of
several preservativities, let us see some preliminaries.

Theorem

Let T has extension property. Then

N(2) = PN(2)∨ and SN(2) = SPN(2)∨.

N = PN∨ and SN = SPN∨, whenever T ⊇ iK4Ca.

Corollary

|≈T
SN(2)

= |≈T
SPN(2)

and ∼T
SN(2)

= ∼T
SPN(2)

and ∼T
N(2)

= ∼T
PN(2)

and if
T ⊇ iK4Ca then |≈T

SN
= |≈T

SPN
. |≈T

Γ
= |≈T

Γ
∨
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Theorem

Ah := (A∗)2 = ⌊A⌋iGLCa
SN

and hence (SN, iGLCa) is recursively

strong downward compact. Moreover [[iGLCa, atomb]]Le ⊢ A�Ah.

Proof.

Derived by rdc of (NNIL, IPC) from Visser [2002]. 2
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Ax : A�B, for every iGLCa ⊢ A → B.

Le: A�2A for every A ∈ L2.

V(atomb) : B → C �
∨n+m

i=1 {B}
atomb

(Ei), in which
B =

∧n
i=1(Ei → Fi) and C =

∨n+m
i=n+1Ei, and

{A}
atomb

(B) :=

{
B : B ∈ atomb

A → B : otherwise

A�B A� C Conj
A�B ∧ C

A�B B � C
Cut

A� C
B �A C �A Disj

B ∨ C �A
A�B (C ∈ atomb)

C → A� C → B
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Theorem

[[iGLCa, atomb]]Le = |≈iGLCa

SN
= |≈iGLCa

SN∨
= |≈iGLCa

SPN
= |≈iGLCa

SPN∨
.

Moreover all above relations are decidable.

Proof.

Prime factorization and |≈T
Γ
= |≈T

Γ
∨ imply |≈iGLCa

SN
= |≈iGLCa

SN∨
= |≈iGLCa

SPN
= |≈iGLCa

SPN∨
.

General soundenss implies [[iGLCa, atomb]]Le ⊆ |≈iGLCa

SPN
.

To show |≈iGLCa

SN
⊆ [[iGLCa, atomb]]Le, let A |≈iGLCa

SN
B. Then Ah → B

and hence [[iGLCa, atomb]]Le ⊢ Ah �B. Since
[[iGLCa, atomb]]Le ⊢ A�Ah, Cut implies desired result. 2
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↓SN(2)∨-rsdc

Theorem

(↓N(2)∨, iGL) is recursively strong downward compact.

Moreover [[iGL, parb]] ⊢ A� ⌊A⌋iGL
↓N(2)∨

.

Proof sketch.

Given A, one must treat outer occurrences of 2’s as parameters,
and then

∨
Π in NNIL(par)-projective approximation will work as

⌊A⌋iGL
↓N(2)∨

. 2

54 / 92 Mojtaba Mojtahedi (University of Tehran) Logic Online seminar (30 May/2 June 2022)

http://mmojtahedi.ir


Preliminaries
Projectivity, Unification and admissibility (L0)
Preservativity and relative admissibility (L2)

Provability Semantics
iGLH: The Provability logic of HA

References

Projectivity and sets of propositions
Definition
Axioms
Soundness theorems
Greatest lower bound
Axiomatization
iGLH(Γ,T) and iPH and some properties

Ax : A�B, for every iGLCa ⊢ A → B.

V(parb) : B → C �
∨n+m

i=1 {B}
parb
(Ei), in which B =

∧n
i=1(Ei → Fi)

and C =
∨n+m

i=n+1Ei, and

{A}
parb
(B) :=

{
B : B ∈ parb

A → B : otherwise

A�B A� C Conj
A�B ∧ C

A�B B � C
Cut

A� C
B �A C �A Disj

B ∨ C �A
A�B (C ∈ parb)

C → A� C → B
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Theorem

All are decidable:

[[iGL, parb]] = |≈iGL
↓N(2)

= |≈iGL
↓N(2)

∨ = |≈iGL
↓PN(2)

= |≈iGL
↓PN(2)

∨ =

= ∼iGL
N(2)

= ∼iGL
N(2)

∨ = ∼iGL
PN(2)

= ∼iGL
PN(2)

∨ .

Proof sketch.

Prime factorization and |≈T
Γ
= |≈T

Γ
∨ imply |≈iGL

↓N(2)
∨ = |≈iGL

↓PN(2)
= |≈iGL

↓PN(2)
∨ and

∼iGL
N(2)

= ∼iGL
N(2)

∨ = ∼iGL
PN(2)

= ∼iGL
PN(2)

∨ . Moreover implies ∼iGL
N(2)

⊆ |≈iGL
↓N(2)

.
General soundenss implies [[iGL, parb]] ⊆ ∼iGL

N(2)
. To show

|≈iGL
↓N(2)

∨ ⊆ [[iGL, parb]], let A |≈iGL
↓N(2)

B. Hence iGL ⊢ ⌊A⌋iGL
↓N(2)∨

→ B

and thus [[iGL, parb]] ⊢ ⌊A⌋iGL
↓N(2)∨

�B. Since

[[iGL, parb]] ⊢ A� ⌊A⌋iGL
↓N(2)∨

we are done. 2
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C↓SN(2)∨-rsdc

Theorem

(↓SN(2)∨, iGL) is recursively strong downward compact.

Moreover [[iGL, parb]]Le
− ⊢ A� ⌊A⌋iGL

↓SN(2)∨
.

Proof sketch.

Given A, one first compute ⌊A⌋iGL
↓N(2)∨

. Let B is its

N(2)∨-projection and define ⌊A⌋iGL
↓SN(2)∨

:= ⌊A⌋iGL
↓N(2)∨

∧B2. 2
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Ax : A�B, for every iGLCa ⊢ A → B.

Le
−
: A�2A for every A ∈ L0(parb).

V(parb) : B → C �
∨n+m

i=1 {B}
parb
(Ei), in which B =

∧n
i=1(Ei → Fi)

and C =
∨n+m

i=n+1Ei, and

{A}
parb
(B) :=

{
B : B ∈ parb

A → B : otherwise

A�B A� C Conj
A�B ∧ C

A�B B � C
Cut

A� C
B �A C �A Disj

B ∨ C �A
A�B (C ∈ parb)

C → A� C → B
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Theorem

[[iGL, parb]]Le
−
= |≈iGL

↓SN(2)
= |≈iGL

↓SN(2)
∨ = |≈iGL

↓SPN(2)
= |≈iGL

↓SPN(2)
∨ =

= ∼iGL
SN(2)

= ∼iGL
SN(2)

∨ = ∼iGL
SPN(2)

= ∼iGL
SPN(2)

∨ .

Proof sketch.

Prime factorization and |≈T
Γ
= |≈T

Γ
∨ imply

|≈iGL
↓SN(2)

= |≈iGL
↓SN(2)

∨ = |≈iGL
↓SPN(2)

= |≈iGL
↓SPN(2)

∨ and
∼iGL
SN(2)

= ∼iGL
SN(2)

∨ = ∼iGL
SPN(2)

= ∼iGL
SN(2)

∨ . Moreover implies
∼iGL
SN(2)

⊆ |≈iGL
↓SN(2)

. General soundenss implies [[iGL, parb]]Le
− ⊆ ∼iGL

SN(2)
. To

show |≈iGL
↓SN(2)

∨ ⊆ [[iGL, parb]]Le
−
, let A |≈iGL

↓SN(2)
B. Hence

iGL ⊢ ⌊A⌋iGL
↓SN(2)∨

→ B and thus [[iGL, parb]]Le
− ⊢ ⌊A⌋iGL

↓SN(2)∨
�B.

Since [[iGL, parb]]Le
− ⊢ A� ⌊A⌋iGL

↓SN(2)∨
we are done. 2
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Theorem

(C↓SN(2)∨, iGL) is recursively strong downward compact.

Moreover [[iGL, parb]]Le ⊢ A� ⌊A⌋iGL
C↓SN(2)∨

.

Proof sketch.

Given A, one first compute ⌊A⌋iGL
↓SN(2)∨

. Then define

⌊A⌋iGL
C↓SN(2)∨

:= 2. ⌊A⌋iGL
↓SN(2)∨

2
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Ax : A�B, for every iGLCa ⊢ A → B.

Le: A�2A for every A ∈ L2.

V(parb) : B → C �
∨n+m

i=1 {B}
parb
(Ei), in which B =

∧n
i=1(Ei → Fi)

and C =
∨n+m

i=n+1Ei, and

{A}
parb
(B) :=

{
B : B ∈ parb

A → B : otherwise

A�B A� C Conj
A�B ∧ C

A�B B � C
Cut

A� C
B �A C �A Disj

B ∨ C �A
A�B (C ∈ parb)

C → A� C → B
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iGLH ⊆ iPH

Theorem

[[iGL, parb]]Le = |≈iGL
C↓SN(2)

= |≈iGL
C↓SN(2)

∨ = |≈iGL
C↓SPN(2)

= |≈iGL
C↓SPN(2)

∨

Moreover all mentioned relations are decidable.

Proof.

Prime factorization and |≈T
Γ
= |≈T

Γ
∨ imply

|≈iGL
C↓SN(2)

= |≈iGL
C↓SN(2)

∨ = |≈iGL
C↓SPN(2)

= |≈iGL
C↓SPN(2)

∨ . General soundenss implies
[[iGL, parb]]Le ⊆ |≈iGL

C↓SPN(2)
. To show |≈iGL

C↓SN(2)
∨ ⊆ [[iGL, parb]]Le, let

A |≈iGL
C↓SN(2)

B. Hence iGL ⊢ ⌊A⌋iGL
C↓SN(2)∨

→ B and thus

[[iGL, parb]]Le ⊢ ⌊A⌋iGL
C↓SN(2)∨

�B. Since

[[iGL, parb]]Le ⊢ A� ⌊A⌋iGL
C↓SN(2)∨

we are done. 2
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Theorem

(SN(2), iGL) is recursively strong downward compact. Moreover

[[iGL, parb]]LeA ⊢ A� ⌊A⌋iGL
SN(2)

.

A flavour of proof.

In the computation of ⌊A⌋iGL
SN(2)

is not just an add on for the
Visser’s NNIL-algorithm. One must go inside that algorithm
and make some additional instruction.
x → B is approximated by ⌊B[x̂ : ⊤]⌋iGL

SN(2)
.

B → x is approximated by ⌊¬B⌋iGL
SN(2)

. 2
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Ax : A�B, for every iGLCa ⊢ A → B.

Le: A�2A for every A ∈ L2.

A: A� θ̂(A), for every substitution θ.

V(parb) : B → C �
∨n+m

i=1 {B}
parb
(Ei), in which B =

∧n
i=1(Ei → Fi)

and C =
∨n+m

i=n+1Ei, and

{A}
parb
(B) :=

{
B : B ∈ parb

A → B : otherwise

A�B A� C Conj
A�B ∧ C

A�B B � C
Cut

A� C
B �A C �A Disj

B ∨ C �A
A�B (C ∈ parb)

C → A� C → B
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Examples back to e1

⌊x⌋ = ⊥

⌊A⌋ = ⊥ if A ∈ L0(var) and A is not a theorem of IPC.

⌊p → x⌋ = ¬p

⌊2x → x⌋ = ¬2x

⌊2. x → y⌋ = ¬2x.
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iGLH ⊆ iPH

Theorem

[[iGL, parb]]LeA = |≈iGL
SN(2)

= |≈iGL
SPN(2)

= |≈iGL
SPN(2)

∨

Moreover all mentioned relations are decidable.

Proof.

Prime factorization and |≈T
Γ
= |≈T

Γ
∨ imply |≈iGL

SN(2)
= |≈iGL

SPN(2)
= |≈iGL

SPN(2)
∨ .

General soundenss implies [[iGL, parb]]LeA ⊆ |≈iGL
SPN(2)

. To show

|≈iGL
SN(2)

⊆ [[iGL, parb]]LeA, let A |≈iGL
SN(2)

B. Hence iGL ⊢ ⌊A⌋iGL
SN(2)

→ B

and thus [[iGL, parb]]LeA ⊢ ⌊A⌋iGL
SN(2)

�B. Since

[[iGL, parb]]LeA ⊢ A� ⌊A⌋iGL
SN(2)

we are done. 2
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sdc

H(Γ,T) := {2A → 2B : A |≈T
Γ
B}.

Hence iGLH(Γ,T) is iGL plus the axiom H(Γ,T).

iGLH := iGLH(C↓SN(2), iGL). (provability logic of HA)

iGLH2 := iGLH(SN(2), iGL). (complete but not sound)

iGLCaHσ := iGLCaH(SN, iGLCa).(Σ1-provability logic of HA)
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On Provability Logic of HA
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Question

Why the PLHA is not simply the following?

iGL plus 2A → 2B for every A ∼iGL B

Currently the provability logic of HA is iGL plus 2A → 2B
for some A,B satisfying A ∼iGL B. This means that
A |≈iGL

C↓SN(2)
B implies A ∼iGL B.

Moreover, one expects that only those admissible rules of
iGL belong to the PLHA which HA can formalize and verify
them for herself.

2A ∼iGL A however HA is not able to verify it.

Similarly following is admissible while HA can not verify:
2(A ∨B) → (2A ∨2B) ∼iGL 2(A → B) ∨2(B → A).
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{{T,∆}} (Compare with [[T,∆]] )

T: All theorems of T.

V(∆) : B → C �
∨n+m

i=1 {B}∆(Ei), in which
B =

∧n
i=1(Ei → Fi) and C =

∨n+m
i=n+1Ei.

Mont(∆): A�B → (C → A)� (C → B) for every C ∈ ∆.

Le: A�2A for every A.

Disj: (B �A ∧ C �A) → (B ∨ C)�A.

Conj: [(A�B) ∧ (A� C)] → (A� (B ∧ C)).

Cut: [(A�B) ∧ (B � C)] → (A� C).

MP: A, A → B / B.

PNec: A → B / A�B.
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PLHA

iPH := {{iGL, parb}}. Hence
[[iGL, parb]]Le ⊆ {{iGL, parb}} = iPH.

Iemhoff [2003] introduced iPH and presented a proof
provided by de Jongh & Visser that iPH is sound for
arithmetical interpretations in HA, i.e. iPH ⊢ A implies
HA ⊢ α

HA
(A) for every α.

Iemhoff [2003] conjectures that iPH is also complete for the
arithmetical interpretations.

iPHσ := {{iGLCa, atomb}}.
The same proof implies that iPHσ is sound for
Σ1-interpretations in HA.

It is quite natural to expect that iPHσ is also complete for
Σ1-interpretations.
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iPH includes iGLH PLHA

Lemma

iGLH ⊢ A implies iPH ⊢ A.

Proof.

By induction on the proof complexity of iGLH ⊢ A. All cases
are trivial except for axiom instances of H(C↓SN(2), iGL),
i.e. A = 2B → 2C with B |≈iGL

C↓SN(2)
C. implies that

[[iGL, parb]]Le ⊢ B � C and hence iPH ⊢ B � C. 2
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Iemhoff [2003] provides soundness and completeness of iPH
for some class of intuitionistic modal Kripke models.

K, w ⊩ A�B iff ∀u = w (K, u ⊩ A ⇒ K, u ⊩ B).

Iemhoff [2001a] also proved some partial completeness
results corresponding to some fragments of iGLH.

Mentioned Kripke models are infinite. This makes them
difficult to work with.

Here we provide Kripke-style semantic for provability and
preservativity which enjoys finite-model property.

The main idea is that we assign a proposition φw to each
node w and

K, w ⊩ 2B iff ∀u = w ( φw ⊢ B)
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An example back to e1

⊮ 2(x ∨ y) → (2x ∨2y)

v ⊩ ⊡(x ∨ y)
u ⊩ ⊡(x ∨ y)
φu := ⊡x
φv := ⊡y
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Another example back to e2

⊮ 2[2(x ∨ y) → (2x ∨2y)] → 2[2(x → y) ∨2(y → x)]

φu := ⊡[2(x ∨ y) → (2x ∨2y)]

u ⊩ 2⊥

u ⊩ ⊡[2(x ∨ y) → (2x ∨2y)]

φu ⊢ 2(x ∨ y) → (2x ∨2y)

φu ⊬ 2(x → y) ∨2(y → x)
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Definition

K = (W,≼,<, V , φ) is called a (∆,Γ,T)-semantic if
K̃ := (W,≼,<, V ) is a transitive conversely well-founded Kripke
model for the intuitionistic modal logic and

φ is a function on <-accessible nodes of W and φw ∈ Γ.

K, w ⊩ φw.

K, w ⊩ 2A ⇔ ∀u = w φu,∆u ⊢T A

Given a set of modal propositions Y , define

Yw := {E ∈ Y : K, w ⊩ E}.

Whenever Γ = ∆ we simply say that K is a (Γ,T)-semantic. In
this case it doesn’t matter how φw ∈ Γ are defined.
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General Completeness

Theorem

If A ∈ ∆-NF and K is (∆,Γ,T)-semantic then

K̃, w ⊩ A iff K, w ⊩ A.

Proof.

Straightforward induction on the complexity of A. 2
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Theorem

Forcing relationship for finite (∆,Γ,T)-semantic is decidable
whenever (∆,T) is recursively downward compact and T is
sound.

Proof.

Let K = (W,≼,<, V , φ) be a (∆,Γ,T)-semantic. We show
decidability of K, w ⊩ A by double induction on W ordered by
= and complexity of A.

A = 2B. It is enough to decide ∆u ⊢T φu → B for every
u = w. Since (∆,T) is recursively downward compact, one

may effectively compute ⌊φu → B⌋T
∆
. By definition of ⌊.⌋T

Γ

it is enough to decide ∆u ⊢T ⌊φu → B⌋T
∆
which is equivalent

to K, u ⊩ ⌊φu → B⌋T
∆
. Then use induction hypothesis. 2
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Definition of Preservativity Semantic

We extend K, w ⊩ A to the language L� as follows:

K, w ⊩ B � C ⇔
∀u = w ∀E ∈ ∆ (∆u, φu ⊢T E → B implies ∆u, φu ⊢T E → C),
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Relation to Preservativity Soundness

Theorem

|≈T
Γ
is sound for (∆,Γ,T)-semantics, i.e. given such preservativity

semantics K, we have K ⊩ A�B whenever A |≈T
Γ
B.

Proof.

Let A |≈T
Γ
B and K = (W,≼,<, V , φ) be a (∆,Γ,T)-semantics

and w < u ∈ W and E ∈ ∆ such that φu,∆u, E ⊢T A. Hence
there is a finite set Φu ⊆ ∆u such that Φu, E, φu ⊢ A. By
conjunctive closure condition, we have

∧
Φu ∧ E ∧ φu ∈ Γ and

thus by A |≈T
Γ
B we get Φu, E, φu ⊢T B. Hence we have

φu,∆u, E ⊢T B. 2
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Soundness Second reduction

Theorem

iGLH(Γ,T) is sound for (∆,Γ,T)-semantics whenever IPC ⊆ T
and SN(2) ⊆ ∆.

The proof is by induction on A ∈ L2 and W ordered by =.

One may use to show soundness of H(Γ,T).

SN(2) ⊆ ∆ is needed for soundness of iGL and
necessitation.

The proof is straightforward.
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Completeness

Theorem

iGLH(Γ,T) is complete for good (Γ,T)-semantics, if (Γ,T) is sdc
and Γ ⊇ SN(2) is closed under conjunctions and T ⊇ IPC.

Proof.

Let iGLH(Γ,T) ⊬ A. Then by we also have

iGLH(Γ,T) ⊬ ⌊⌊A⌋⌋T
Γ
and a fortiori iGL ⊬ ⌊⌊A⌋⌋T

Γ
. implies that

there is some good Kripke model K̃ := (W,≼,<, V ) such that

K̃, w0 ⊮ ⌊⌊A⌋⌋T
Γ
. Define K := (W,≼,<, V , φ) and choose φw ∈ Γ

as you want. implies that ⌊⌊A⌋⌋T
Γ
∈ Γ-NF and implies

K ⊮ ⌊⌊A⌋⌋T
Γ
. Then soundness implies desired result. 2
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Second reduction

Corollary

iGLCaHσ is sound and complete for Ca good
(SN, iGLCa)-semantics.

Corollary

iGLH2 is sound and complete for good (SN(2), iGL)-semantics.

Corollary

iGLH is sound for (SN(2),C↓SN(2), iGL)-semantics.
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1st-red

Since C↓SN(2) is not closed under conjunctions we do not
have completeness of iGLH for (C↓SN(2), iGL)-semantics.

Like most useful results, the proof of following theorem is
not easy!

Its proof needs its own saturation and truth lemmas.

See the manuscript for details.

Theorem

iGLH is complete for good (SN(2),C↓SN(2), iGL)-semantics.

Corollary

iGLH is decidable.
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Back to example ⊮ 2(x ∨ y) → (2x ∨2y)

That model is (SN(2),C↓SN(2), iGL)-semantic.

K, w ⊮ 2y:

Proof.

Enough to show SN(2)u, 2
. x ⊬ y. If SN(2)u ⊢ 2. x → y, then

SN(2)u ⊢ ⌊2. x → y⌋iGL
SN(2)

. As we saw earlier ,

⌊2. x → y⌋iGL
SN(2)

= ¬2x. Thus SN(2)u ⊢ ¬2x. Hence by

soundness of iGL we have K, u ⊩ ¬2x, a contradiction. 2

This shows that iGLH ⊬ 2(x ∨ y) → (2x ∨2y).
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Second step reduction
First step reduction

Theorem

The provability logic of HA is iGLH and hence is decidable.

Proof.

Soundness: iGLH ⊢ A implies HA ⊢ α
HA
(A) for every α.

implies iGLH ⊆ iPH. Then by soundness of iPH we have
desired result.

Completeness: iGLH ⊬ A implies HA ⊬ α
HA
(A) for some α.

iGLH ⊬ A implies iGLCaHσ ⊬ θ(A) for some propositional modal
substitution θ (we will see later). Then arithmetical
completeness of iGLCaHσ implies desired result. 2
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What happens without H and Hσ 2nd-red

Theorem

iGL ⊬ A implies iGLCa ⊬ β(A) for some propositional
substitution β.

Proof.

Since iGL ⊬ A, there is some K := (W,≼,<, V ) with K ⊮ A .
Define K′: for every w ∈ W add a fresh atomic pw and let it be
forced (satisfied) at w and its successor/above nodes. No other
atomics are forced at w.
Define β(x) :=

∨
K,w⊩x

Qw and Qw := qw ∧
∧

w<u
¬qu.

Claim. K, w ⊩ A iff K′, w ⊩ β(A). 2

87 / 92 Mojtaba Mojtahedi (University of Tehran) Logic Online seminar (30 May/2 June 2022)

http://mmojtahedi.ir


Preliminaries
Projectivity, Unification and admissibility (L0)
Preservativity and relative admissibility (L2)

Provability Semantics
iGLH: The Provability logic of HA

References

Second step reduction
First step reduction

iGLH ⊬ A implies iGLCaHσ ⊬ θ(A)

The proof is broken in two steps:

1 iGLH ⊬ A implies iGLH2 ⊬ γ(A) for some γ.

2 iGLH2 ⊬ A implies iGLCaHσ ⊬ β(A) for some β.

Both are proved via provability semantics.
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iGLH2 ⊬ A implies iGLCaHσ ⊬ β(A)

Sketch of the proof.

Since iGLH2 ⊬ A, by completeness for
(SN(2), iGL)-semantics , K ⊮ A for some
K = (W,≼,<, V ,⊤).

On the other hand, iGLCaHσ is sound for CPa

(SN(2), SN, iGLCa)-semantics.

One must transform K to a (SN(2),SN, iGLCa)-semantic.

The transformation is a uniform collection of
transformations for iGL and iGLCa .

See the manuscript for details.
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iGLH ⊬ A implies iGLH2 ⊬ γ(A)

The first step reduction is not as elementary as the second
one.

It uses features of relative projectivity and simultaneous
fixed point theorem.
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iGLH ⊬ A implies iGLH2 ⊬ γ(A)

Sketch of the proof.

iGLH ⊬ A implies K ⊮ A for some good
(SN(2),C↓SN(2), iGL)-semantic K = (W,≼,<, V , φ) .

Since φw ∈ C↓SN(2) there is an (SN(2), iGL)-projective
substitution θw such that θ̂w(φw) ∈ SN(2).

The main idea is that one-bye-one we must kill φw’s and
send them in to the set SN(2).

Good news: when some φw goes in to SN(2) it remains
there since SN(2) is closed under substitutions.

Bad news: These θ̂w’s are not even substitutions.

Solution: simultaneous fixed point theorem in iGL . 2
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Thanks For Your Attention
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