$\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \text{Preservativity and relative admissibility } (\mathcal{L}_0) \\ & \text{Provability Semantics} \\ & \text{iGLH: The Provability logic of HA} \\ & \text{References} \end{array}$

On Provability Logic of HA

Mojtaba Mojtahedi (University of Tehran)

University of Tehran

February 1, 2023

1/92 Mojtaba Mojtahedi (University of Tehran)

Logic Online seminar (30 May/2 June 2022)

 $\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and minisibility } (\mathcal{L}_0) \\ \text{Preservativity and relative admissibility } (\mathcal{L}_D) \\ \text{Provability Semantics} \\ \text{iGLH: The Provability logic of HA} \\ \text{References} \end{array}$

- Every slide has a unique number, printed at the bottom-left.
- If your question refers to some slide, use this page number.
- You may find slides in the chat section (a file named "PLHA.pdf").

(人間) シスヨン イヨン

 $\begin{array}{l} \mbox{Projectivity, Unification and admissibility (\mathcal{L}_0)}\\ \mbox{Preservativity and relative admissibility (\mathcal{L}_{\Box})}\\ \mbox{Provability Semantics}\\ \mbox{iGLH: The Provability logic of HA}\\ \mbox{References} \end{array}$

Elementary definitions Kripke models for intuitionistic modal logics NNIL Fixed-point theorem

Propositional non-modal language

 $\mathcal{L}_0: \quad \lor, \land, \rightarrow, \mathsf{par}, \mathsf{var}$

- var and par are countably infinite sets of atomics and ⊤, ⊥ ∈ par.
- $\neg A := A \rightarrow \bot$.
- atom := par \cup var
- par stands for Σ_1 -substitutions, var for arbitrary.
- For a propositional substitution θ , by default $\theta(p) := p$ for every $p \in par$.
- $\mathcal{L}_0(X)$ indicates the set of all Boolean combinations of propositions in the set X.

 $\begin{array}{c|c} & & & & \\ Projectivity, Unification and admissibility (<math>\mathcal{L}_0$) & \\ Preservativity and relative admissibility (\mathcal{L}_0) & \\ Provability Semantics & \\ iGLH: The Provability logic of HA & \\ References & \\ \end{array}

Modal language

$$\mathcal{L}_{\rhd} := \mathcal{L}_0 + \rhd$$
 and $\Box A := \top \rhd A$ and $\mathcal{L}_{\Box} := \mathcal{L}_0 + \Box$

- \triangleright is a binary modal operator.
- We usually consider $A \triangleright B$ for preservativity.
- $\mathsf{B} := \{\Box A : A \in \mathcal{L}_{\Box}\}.$
- parb := par \cup B.
- atomb := atom \cup B.
- $\Box A := A \land \Box A.$

 $\begin{array}{c|c} \mathbf{Preliminaries} \\ \text{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \text{Preservativity and relative admissibility } (\mathcal{L}_0) \\ \text{Provability Semantics} \\ \text{iGLH: The Provability logic of HA} \\ \text{References} \end{array} \begin{array}{c} \mathbf{Elementary definitions} \\ \text{Kripke models for intuitionistic modal logi} \\ \text{NNIL} \\ \text{Fixed-point theorem} \end{array}$

Logics

$$\mathsf{K}: \ \Box(A \to B) \to (\Box A \to \Box B).$$

 $4: \ \Box A \to \Box \Box A.$

L:
$$\Box(\Box A \to A) \to \Box A$$
. (The Löb's axiom)

$$C_p: p \to \Box p \text{ for every } p \in par.$$

 C_a : $a \to \Box a$ for every $a \in atom$.

Given a logic L and axiom-schemata $X_1,\ldots,X_n,$ the logic $LX_1\ldots X_n$ is defined as L plus the axioms $X_1,\ldots,X_n.$ Then we define following modal logics:

- i: IPC plus necessitation and C_p .
- iGL := iK4L.

- 4 回 ト - 4 回 ト - -

Elementary definitions Kripke models for intuitionistic modal logics NNIL Fixed-point theorem

・ 同 ト ・ ヨ ト ・ ヨ ト

Propositional substitutions

- $\theta(x)$ is a proposition in the language $\mathcal{L}_{\triangleright}$ for every $x \in \mathsf{var}$.
- $\theta(p) = p$ for every $p \in par$.
- $\theta(B \circ C) = \theta(B) \circ \theta(C)$ for every $\circ \in \{\lor, \land, \rightarrow, \rhd\}$.

Given θ , define $\hat{\theta}$ same as θ except for boxed propositions for which $\hat{\theta}$ operates as identity:

$$\hat{\theta}(A \triangleright B) := A \triangleright B$$
 and hence $\hat{\theta}(\Box A) := \Box A$.

Heyting Arithmetic

Elementary definitions Kripke models for intuitionistic modal logics NNIL Fixed-point theorem

イロト イポト イヨト イヨト

The Heyting arithmetic is defined as the intuitionistic fragment of first-oder Peano Arithmetic PA.

 Elementary definitions Kripke models for intuitionistic modal logics NNIL Fixed-point theorem

イロト イポト イヨト イヨト 二日

Arithmetical substitutions

A function α on atom such that $\alpha(a)$ is a first-order arithmetical sentence for every $a \in \mathsf{atom}$ and $\alpha(a) \in \Sigma_1$ for every $a \in \mathsf{par}$ and $\alpha(\bot) = \bot$ and $\alpha(\top) = \top$. Moreover α is called a Σ_1 -substitution if $\alpha(a) \in \Sigma_1$ for every $a \in \mathsf{atom}$.

- $\alpha_{\mathsf{HA}}(a) := \alpha(a)$ for every $a \in \mathsf{atom}$, and $\alpha_{\mathsf{HA}}(\bot) = \bot$.
- α_{HA} commutes with boolean connectives: \lor, \land and \rightarrow .
- $\alpha_{\text{HA}}(A \triangleright B)$ is defined as an arithmetization of Σ_1 -preservativity: For every $E \in \Sigma_1$,

if $\mathsf{HA} \vdash E \to \alpha_{\mathsf{HA}}(A)$ then $\mathsf{HA} \vdash E \to \alpha_{\mathsf{HA}}(B)$.

• $\alpha_{\mathsf{HA}}(\Box A) =$ an arithmetization of "A is provable in HA".

 $\begin{array}{c|c} & & & \\ & & & \\ Projectivity, Unification and admissibility (\mathcal{L}_0) \\ Preservativity and relative admissibility (\mathcal{L}_0) \\ Provability Semantics \\ & & \\ &$

 $\mathsf{PL}^{\square}(\mathsf{HA})$, the provability logic of HA is defined as

 $\{A \in \mathcal{L}_{\Box} : \mathsf{HA} \vdash \alpha_{\mathsf{HA}}(A) \text{ for every arithmetical substitution } \alpha\}$

 $\mathsf{PL}^{\triangleright}(\mathsf{HA})$, the Preservativity logic of HA is defined

 $\{A \in \mathcal{L}_{\rhd} : \mathsf{HA} \vdash \alpha_{\mathsf{HA}}(A) \text{ for every arithmetical substitution } \alpha\}$

Similarly one may define $\mathsf{PL}_{\Sigma}^{\Box}(\mathsf{HA})$ and $\mathsf{PL}_{\Sigma}^{\rhd}(\mathsf{HA})$ as provability and preservativity logics for Σ_1 -substitutions.

イロト 不得下 イヨト イヨト 二日

$\begin{array}{c|c} & & & \\ \hline Preliminaries \\ Projectivity, Unification and admissibility (<math>\mathcal{L}_0$) \\ Preservativity and relative admissibility (\mathcal{L}_0) Provability Semantics Provability Semantics iGLH: The Provability logic of HA References \\ \hline \end{array} \qquad \begin{array}{c} Elementary definitions \\ Kripke models for intuitionistic modal logics \\ NNIL \\ Fixed-point theorem \end{array}

- $\mathsf{PL}^{\square}(\mathsf{HA}) \nvDash \square(A \lor B) \to (\square A \lor \square B)$, Myhill [1973]; Friedman [1975]
- $\mathsf{PL}^{\square}(\mathsf{HA}) \vdash \square(A \lor B) \to \square(\square A \lor \square B)$, in which $\square A$ is a shorthand for $A \land \square A$, Leivant [1975]
- $\mathsf{PL}^{\square}(\mathsf{HA}) \vdash \square \neg \neg \square A \rightarrow \square \square A$ and $\mathsf{PL}^{\square}(\mathsf{HA}) \vdash \square(\neg \neg \square A \rightarrow \square A) \rightarrow \square(\square A \lor \neg \square A)$, Visser [1981, 1982]
- Decidability of letterless fragment of $\mathsf{PL}^{\square}(\mathsf{HA})$. Visser [2002]
- Axiomatization and decidability of $\mathsf{PL}_{\Sigma}^{\Box}(\mathsf{HA})$. Ardeshir and Mojtahedi [2018]; Visser and Zoethout [2019]
- Axiomatization and decidability of PL[□]_Σ(HA) relative in PA and N. Mojtahedi [2021]

< ロト < 同ト < ヨト < ヨト -

 $\begin{array}{l} \mbox{Projectivity, Unification and admissibility (\mathcal{L}_0)}\\ \mbox{Preservativity and relative admissibility (\mathcal{L}_{\Box})}\\ \mbox{Provability Semantics}\\ \mbox{iGLH: The Provability logic of HA}\\ \mbox{References} \end{array}$

Elementary definitions Kripke models for intuitionistic modal logics NNIL Fixed-point theorem

< ロト < 同ト < ヨト < ヨト -

The following translation, is some variant of the Gödel's celebrated translation for the embedding of IPC in S4 [Gödel, 1933].

Definition

For every proposition $A \in \mathcal{L}_{\Box}$ define A^{\Box} inductively as follows:

- $A^{\Box} := \Box A$, for $A \in var$.
- $A^{\Box} := A$ for $A \in \mathsf{parb}$.
- $(B \circ C)^{\square} := B^{\square} \circ C^{\square}$. for $\circ \in \{\lor, \land\}$.
- $(B \to C)^{\square} := \boxdot (B^{\square} \to C^{\square}).$

$\begin{array}{c|c} & & & \\ & & & \\ Projectivity, Unification and admissibility (\mathcal{L}_0) \\ Preservativity and relative admissibility (\mathcal{L}_0) \\ & & & \\ Provability Semantics \\ & & \\$

A ∈ L_□ is called self complete if there is some B ∈ L_□ such that A = B[□]:

$$\mathsf{S} := \{ B^{\square} : B \in \mathcal{L}_{\square} \}.$$

• A is called T-complete if $T \vdash A \rightarrow \Box A$:

$$\mathsf{C}^{\mathsf{T}} := \{ A \in \mathcal{L}_{\Box} : \mathsf{T} \vdash A \to \Box A \}.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- If $T \supseteq iK4$ we have $S \subseteq C^{T}$.
- \bullet We may omit the superscript T in the notation C' and simply write $\mathsf{C}.$

 $\begin{array}{c|c} & & & \\ & & & \\ Projectivity, Unification and admissibility (\mathcal{L}_0) \\ Preservativity and relative admissibility (\mathcal{L}_0) \\ Provability Semantics \\ & & \\ &$

A Kripke model for the intuitionistic modal logic, is a combination of a Kripke model for intuitionistic logic and the classical modal logic. Let $\mathcal{K} = (W, \prec, \sqsubset, V)$:

- $W \neq \emptyset$.
- (W, ≺) is a partial order (transitive and irreflexive). We write ≼ for the reflexive closure of ≺.
- V is the valuation on atomics, i.e. $V \subseteq W \times \text{atom}$.
- $w \preccurlyeq u$ and $w \lor a$ implies $u \lor a$ for every $w, u \in W$ and $a \in \mathsf{atom}$.
- (≼; □) ⊆ □, i.e. w ≼ u □ v implies w □ v. This condition is assumed to ensure that the previous property holds for all modal propositions and not only for a ∈ atom.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\begin{array}{l} \mbox{Projectivity, Unification and admissibility (\mathcal{L}_0)}\\ \mbox{Preservativity and relative admissibility (\mathcal{L}_{\Box})}\\ \mbox{Provability Semantics}\\ \mbox{iGLH: The Provability logic of HA}\\ \mbox{References} \end{array}$

Elementary definitions Kripke models for intuitionistic modal logics NNIL Fixed-point theorem

(人間) シスヨン イヨン

- \boldsymbol{V} is extended to all modal propositions:
 - $\mathcal{K}, w \Vdash a$ iff $w \lor a$, for $a \in \mathsf{atom}$.
 - $\mathcal{K}, w \Vdash A \land B$ iff $\mathcal{K}, w \Vdash A$ and $\mathcal{K}, w \Vdash B$.
 - $\mathcal{K}, w \Vdash A \lor B$ iff $\mathcal{K}, w \Vdash A$ or $\mathcal{K}, w \Vdash B$.
 - $\mathcal{K}, w \Vdash A \to B$ iff for every $u \succcurlyeq w$ if we have $\mathcal{K}, w \Vdash A$ then $\mathcal{K}, w \Vdash B$.
 - $\mathcal{K}, w \Vdash A \rhd B$ iff for every $u \sqsupset w$ with $\mathcal{K}, u \Vdash A$ we have $\mathcal{K}, w \Vdash B$.
 - $\mathcal{K}, w \Vdash \Box A$ iff for every $u \sqsupset w$ we have $\mathcal{K}, w \Vdash A$.

Preliminaries	
Projectivity, Unification and admissibility (\mathcal{L}_0)	
Preservativity and relative admissibility (\mathcal{L}_{\Box})	Kripke models for intuitionistic modal logics
Provability Semantics	
iGLH: The Provability logic of HA	
References	

- We say that u is a successor of w if $w \sqsubset u$.
- We say that u is a predecessor of w if $u \sqsubset w$.
- We say that u is above w if $w \preccurlyeq u$.
- We say that u is beneath w if $u \preccurlyeq w$.
- We say that u is generated by w if $w (\overline{\Box \cup \preccurlyeq}) u$.
- \overline{S} indicates the reflexive transitive closure of S.

Elementary definitions Kripke models for intuitionistic modal logics NNIL Fixed-point theorem

∢iGL/iGLC_a
 ∢ General Completeness

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Theorem

iGL is sound and complete for good Kripke models. Also $iGLC_a$ is sound and complete for good C_a Kripke models.

Preliminaries	
Projectivity, Unification and admissibility (\mathcal{L}_0)	
Preservativity and relative admissibility (\mathcal{L}_{D}) Provability Semantics iGLH: The Provability logic of HA References	Kripke models for intuitionistic modal logics NNIL Fixed-point theorem

- The class of No Nested Implications to the Left, NNIL formulae, for the nonmodal language \mathcal{L}_0 , was introduced in [Visser et al., 1995], and more explored in [Visser, 2002].
- Visser et al. [1995] chracterize the NNIL via Kripke semantics.
- $A \in \mathsf{NNIL}$ and $A \in \mathsf{NI}$ for every $A \in \mathsf{atomb}$.
- $B \circ C \in \mathsf{NNIL}$ if $B, C \in \mathsf{NNIL}$. Also $B \circ C \in \mathsf{NI}$ if $B, C \in \mathsf{NI}$. ($\circ \in \{\lor, \land\}$)
- $B \to C \in \mathsf{NNIL}$ if $B \in \mathsf{NI}$ and $C \in \mathsf{NNIL}$.

Preliminaries	
Projectivity, Unification and admissibility (\mathcal{L}_0)	
Preservativity and relative admissibility (\mathcal{L}_{\Box})	
Provability Semantics	
iGLH: The Provability logic of HA	Fixed-point theorem
References	

- One of the most interesting features of the Gödel-Löb axiom, is the fixed-point theorem.
- It is the propositional remainder of the Gödels diagnalization lemma.
- It says that if x only appears in the scope of \Box in A, then there is some D such that $\mathsf{GL} \vdash D \leftrightarrow A[x:D]$. [Smoryński, 1985]
- One may generalize the same fixed-point theorem to iGL. [Iemhoff et al., 2005]
- It is well-known that one may generalize this fixed-point theorem to a simultaneous version.

A B F A B F

$\begin{array}{c|c} & & & & \\ Preliminaries \\ Projectivity, Unification and admissibility (<math>\mathcal{L}_0$) \\ Preservativity and relative admissibility (\mathcal{L}_0) \\ Provability Semantics \\ iGLH: The Provability logic of HA \\ References \end{array} \qquad \begin{array}{c} Elementary definitions \\ Kripke models for intuitionistic modal logics \\ NNIL \\ Fixed-point theorem \end{array}

Theorem

Let $\vec{E} := \{E_1, \ldots, E_m\}$ and $\vec{a} = \{a_1, \ldots, a_m\}$ such that every occurrences of a_i in E_j is in the scope of some \Box . Then there is a substitution τ which is the simultaneous fixed point of \vec{a} with respect to \vec{E} in iGL, *i.e.*

• $\mathsf{iGL} \vdash \tau(E_i) \leftrightarrow \tau(a_i)$ for every $1 \le i \le m$.

 $\begin{array}{c} \label{eq:projectivity} & \text{Preliminaries} \\ \textbf{Projectivity}, \textbf{Unification and relative admissibility} (\mathcal{L}_{\Box}) \\ \text{Preservativity and relative admissibility} (\mathcal{L}_{\Box}) \\ \text{Provability Semantics} \\ \text{iGLH: The Provability logic of HA} \\ \text{References} \end{array} \qquad \begin{array}{c} \textbf{Unification in the intuitionistic logic} \\ \text{Relative projectivity} \\ \text{Admissible rules of intuitionistic logic} \\ \text{Relative admissibility} \end{array}$

Unification

- Unification problem (in propositional Logic L) asks for substitutions θ which unify A, i.e. $L \vdash \theta(A)$.
- More ambitiously: describe the set of all unifiers for A.
- $\theta \leq \gamma$ iff there is some λ s.t. $\mathsf{L} \vdash \theta(x) \leftrightarrow \lambda \gamma(x)$.
- Classical logic: every unifiable proposition has a most general unifier.
- If θ is a unifier of A then χ_{θ} is a most general one:

$$\chi_{\boldsymbol{\theta}}(\boldsymbol{x}) := (A \wedge \boldsymbol{x}) \vee (\neg A \wedge \boldsymbol{\theta}(\boldsymbol{x}))$$

イロト イポト イヨト イヨト

 $\begin{array}{c|c} & & & & & & \\ Preliminaries \\ Projectivity, Unification and admissibility (<math>\mathcal{L}_0$) \\ Preservativity and relative admissibility (\mathcal{L}_0) \\ Provability Semantics \\ iGLH: The Provability logic of HA \\ References \end{array}

 χ_{θ} is a unifier indeed:

 $A \vdash \chi_{\theta}(A) \leftrightarrow \top$ and $\neg A \vdash \chi_{\theta}(A) \leftrightarrow \top$.

 χ_{θ} is more general than every other unifier γ :

$$A \vdash \chi_{\scriptscriptstyle{\theta}}(x) \leftrightarrow x \Longrightarrow \gamma(A) \vdash \gamma \chi_{\scriptscriptstyle{\theta}}(x) \leftrightarrow \gamma(x)$$

Definition

A is called projective (in L) if there is some unifier θ for A s.t. for every $x \in var$:

$$A \vdash_{\mathsf{L}} \theta(x) \leftrightarrow x$$

- 4 伺 ト 4 三 ト 4 三 ト

 $\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ & \text{Preservativity and relative admissibility } (\mathcal{L}_{\Box}) \\ & \text{Provability Semantics} \\ & \text{iGLH: The Provability logic of HA} \\ & \text{References} \end{array}$

Unification in the intuitionistic logic Relative projectivity Admissible rules of intuitionistic logic Relative admissibility

イロト イポト イヨト イヨト

- $x \vee \neg x$ does not have a most general unifier in IPC.
- Ghilardi [1999] answered to the unification problem for L = IPC and $par = \emptyset$ (Elementary unification or E-unification).
- Ghilardi [1999] first characterized projectives via Kripke semantics.
- Then with the aid of projective approximations he proved that IPC is finitary, i.e. every unifiable A has a finite set of unifiers which are more general than every unifier of A.

Projectivity, Unification and admissibility (\mathcal{L}_0) Proservativity and relative admissibility (\mathcal{L}_0) Provability Semantics iGLH: The Provability logic of HA References

Unification in the intuitionistic logic Relative projectivity Admissible rules of intuitionistic logic Relative admissibility

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Projectivity: relativised

- Instead of unification (\top -fication) we consider Γ -fication for $\Gamma \subseteq \mathcal{L}_0(\mathsf{par})$.
- This means that we ask for all θ 's such that $\mathsf{L} \vdash \theta(A) \in \Gamma$, i.e. $\mathsf{L} \vdash \theta(A) \leftrightarrow E$ for some $E \in \Gamma$.
- In this setting, we say that A is Γ -projective iff there is a Γ -fier θ for A which is projective:

$$A \vdash_\mathsf{L} \theta(x) \leftrightarrow x$$

• $\downarrow \Gamma :=$ the set of all Γ -projective propositions.

 $\begin{array}{c} \mbox{Preliminaries} \\ \mbox{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \mbox{Preservativity and relative admissibility } (\mathcal{L}_0) \\ \mbox{Provability Semantics} \\ \mbox{iGLH: The Provability logic of HA} \\ \mbox{References} \end{array} \qquad \begin{array}{c} \mbox{Unification in the intuitionistic logic} \\ \mbox{Relative projectivity} \\ \mbox{Admissibile rules of intuitionistic logic} \\ \mbox{Relative admissibility} \end{array}$

In the first of two consecutive manuscripts on provability logic of HA we considered the case $\Gamma = \text{NNIL}(\text{par})$ and L = IPC. We followed Ghilardi [1999] to

- characterize NNIL(par)-projectivity via Kripke semantics,
- and then for a given A, compute a finite NNIL(par)-projective approximation.

(人間) シスヨン イヨン

 $\begin{array}{c} \label{eq:projectivity} & \text{Preliminaries} \\ \textbf{Projectivity, Unification and admissibility} (<math>\mathcal{L}_0) \\ \text{Preservativity and relative admissibility} (<math>\mathcal{L}_0) \\ \text{Provability Semantics} \\ \text{iGLH: The Provability logic of HA} \\ \text{References} \end{array} \qquad \begin{array}{c} \text{Unification in the intuitionistic logic} \\ \text{Relative projectivity} \\ \text{Admissible rules of intuitionistic logic} \\ \text{Relative admissibility} \\ \text{Relative admissibility} \end{array}$

Admissible rules

- The problem of admissibility (Friedman 1975) asks for the characterization and decidability of all inference rules A/B which are admissible to the logic L, i.e. for every substitution θ if we have $L \vdash \theta(A)$ then $L \vdash \theta(B)$.
- The classical case is trivial: A/B is admissible iff $A \to B$ is derivable.
- $\neg x \to (y \lor z)/(\neg x \to y) \lor (\neg x \to z)$ is admissible to IPC. [Harrop, 1960]
- Rybakov [1987] showed that admissibility for IPC is decidable.

 $\begin{array}{l} \label{eq:projectivity, Unification and admissibility (\mathcal{L}_0)\\ Proservativity and relative admissibility (\mathcal{L}_0)\\ Provability Semantics\\ iGLH: The Provability logic of HA\\ References \end{array}$

Unification in the intuitionistic logic Relative projectivity Admissible rules of intuitionistic logic Relative admissibility

- 4 回 ト - 4 回 ト

Admissible rules of IPC

- de Jongh and Visser provided a base for all known admissible rules of IPC and conjectured it to be complete.
- Iemhoff [2001b] with the aid of [Ghilardi, 1999] proved the completeness of the base.

 $\begin{array}{c} \mbox{Preliminaries} \\ \mbox{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \mbox{Preservativity and relative admissibility } (\mathcal{L}_0) \\ \mbox{Provability Semantics} \\ \mbox{iGLH: The Provability logic of HA} \\ \mbox{References} \end{array} \\ \begin{array}{c} \mbox{Unification in th} \\ \mbox{Relative project} \\ \mbox{Admissible rules} \\ \mbox{Relative admissible} \end{array}$

Unification in the intuitionistic logic Relative projectivity Admissible rules of intuitionistic logic Relative admissibility

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Relative admissibility

- In the first manuscript, we considered a relative version of admissibility.
- We say that A/B is admissible relative in Γ if

$$\forall E \in \Gamma \ \forall \theta \ (\vdash \theta(E \to A) \Longrightarrow \vdash \theta(E \to B)).$$

• Following the tools and methods in [Iemhoff, 2001b] we found a base for the admissibility relative in NNIL(par).

 $\begin{array}{c|c} \mbox{Preliminaries} \\ \mbox{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \mbox{Preservativity and relative admissibility } (\mathcal{L}_0) \\ \mbox{Preservativity and relative admissibility } (\mathcal{L}_0) \\ \mbox{Provability Semantics} \\ \mbox{iGLH: The Provability logic of HA} \\ \mbox{References} \end{array} \qquad \begin{array}{c} \mbox{Unification in the intuitionistic logic} \\ \mbox{Relative admissibility} \\ \mbox{References} \end{array}$

NNIL(par)-projective approximation

 $\triangleleft (\downarrow N(\Box)^{\lor}, \mathsf{iGL}) \operatorname{rsdc}$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Theorem

Given $A \in \mathcal{L}_0$, there is a finite set $\Pi \subseteq {\downarrow} \mathsf{N}(\mathsf{par})$ such that

- $IPC \vdash \bigvee \Pi \to A.$
- ② $\llbracket \mathsf{IPC}, \mathsf{par} \rrbracket \vdash A \triangleright \bigvee \Pi.$ ●
- **(3)** Π is computable as a function of A.

 $\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ & \text{Preservativity and relative admissibility } (\mathcal{L}_{\square}) \\ & \text{Provability Semantics} \\ & \text{iGLH: The Provability logic of HA} \\ & \text{References} \end{array}$

Unification in the intuitionistic logic Relative projectivity Admissible rules of intuitionistic logic Relative admissibility

▲ iPH

 $[\![\mathsf{T},\Delta]\!]$ has following axioms and rules:

$$\begin{array}{ll} \mathsf{Ax}: & A \rhd B, \text{ for every } \mathsf{T} \vdash A \to B. \\ \mathsf{V}(\Delta): & B \to C \rhd \bigvee_{i=1}^{n+m} \{B\}_{\Delta}(E_i), \text{ in which } B = \bigwedge_{i=1}^n (E_i \to F_i) \\ & \text{ and } C = \bigvee_{i=n+1}^{n+m} E_i, \text{ and} \end{array}$$

$$\frac{A \rhd B}{A \rhd B \land C} \xrightarrow{A \rhd C} \operatorname{Conj} \qquad \qquad \underbrace{A \rhd B}_{A \rhd C} \xrightarrow{B \rhd C} \operatorname{Cut} \\
\underline{B \rhd A}_{B \lor C \rhd A} \xrightarrow{C \rhd A} \operatorname{Disj} \qquad \underbrace{A \rhd B}_{C \to A \rhd C} \xrightarrow{C \to B} \operatorname{Mont}(\Delta) \\
\{A\}_{\Delta}(B) := \begin{cases} B & : B \in \Delta \\ A \to B & : \text{otherwise} \end{cases}$$

29/92 Mojtaba Mojtahedi (University of Tehran) Logic Online seminar (30 May/2 June 2022)

 $\begin{array}{c} & \label{eq:projectivity} & \mbox{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ & \mbox{Preservativity and relative admissibility } (\mathcal{L}_D) \\ & \mbox{Provability Semantics} \\ & \mbox{iGLH: The Provability logic of HA} \\ & \mbox{References} \end{array} & \mbox{Greatest lower bound} \\ & \mbox{Axiomatization} \\ & \mbox{iGLH}(\Gamma, T) \mbox{ and iPH and some properties} \end{array}$

Elevating projectivity to the modal language I

Let $A \in \mathcal{L}_{\Box}$ and $\Gamma \subseteq \mathcal{L}_{0}(\mathsf{parb})$. A substitution θ is called *A*-projective (in T) if

For all atomic a we have $\mathsf{T} \vdash A \to (a \leftrightarrow \theta(a)).$ (3.1)

< ロト < 同ト < ヨト < ヨト -

A substitution θ , is a Γ -fier for $A \in \mathcal{L}_{\Box}$ (notation $A \xrightarrow{\theta}{\mathsf{T}} \Gamma$), if

 $\mathsf{T} \vdash \hat{\theta}(A) \in \Gamma$ i.e. $\hat{\theta}(A)$ is T -equivalent to some $A' \in \Gamma$. θ is a unifier for A if it is $\{\top\}$ -fier for A.

$\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ & \textbf{Preservativity and relative admissibility } (\mathcal{L}_D) \\ & \text{Provability Semantics} \\ & \text{iGLH: The Provability logic of HA} \\ & \text{References} \end{array}$	Projectivity and sets of propositions Definition Axioms Soundness theorems Greatest lower bound Axiomatization iGLH(T, T) and iPH and some properties

Elevating projectivity to the modal language II

- We say that a substitution θ projects A to Γ in T (notation: $A \xrightarrow{\theta}{T} \Gamma$) if θ is A-projective in T and $A \xrightarrow{\theta}{T} \Gamma$.
- We say that A is Γ -projective in T if there is some θ such that $A \xrightarrow[T]{\theta}{T} \Gamma$.
- $\int_{-}^{T} \Gamma$ indicates the set of all propositions which are Γ -projective in T.
- A is projective, if it is $\{\top\}$ -projective.

Preliminaries Projectivity, Unification and admissibility (\mathcal{L}_0) Preservativity and relative admissibility (\mathcal{L}_0) Provability Semantics iGLH: The Provability logic of HA References Provadifies the provention of the

Some notations on sets of propositions

 $\bullet \ {\rm We \ write} \ X_1 \ldots X_n \ {\rm for} \ X_1 \cap \ldots \cap X_n.$

•
$$\Gamma^{\vee} := \{ \bigvee \Delta : \Delta \subseteq_{\text{fin}} \Gamma \text{ and } \Delta \neq \emptyset \}.$$

- $\Gamma(X) := \Gamma \cap \mathcal{L}_0(X)$ and $\Gamma(\Box) := \Gamma(\mathsf{parb}).$
- $\downarrow^{\mathsf{T}} \Gamma :=$ the set of all Γ -projective propositions in the logic T .
- (.)[∨] has the lowest precedence and ↓(.) has the second lowest precedence. This means that

 ${\downarrow}\mathsf{SN}({\square})^{\vee}:=({\downarrow}(\mathsf{SN}({\square})))^{\vee}\quad \mathrm{and}\quad \mathsf{C}{\downarrow}\mathsf{SN}({\square})^{\vee}:=(\mathsf{C}({\downarrow}(\mathsf{SN}({\square}))))^{\vee}.$

イロト イポト イヨト イヨト 二日

$\begin{array}{c} & \mbox{Preliminaries}\\ \mbox{Projectivity, Unification and admissibility} (\mathcal{L}_0)\\ \hline \mbox{Preservativity and relative admissibility} (\mathcal{L}_0)\\ \hline \mbox{Provability Semantics}\\ \mbox{iGLH: The Provability logic of HA}\\ \hline \mbox{References} \end{array}$	Projectivity and sets of propositions Definition Axioms Soundness theorems Greatest lower bound Axiomatization iGLH(Γ , T) and iPH and some properties
Definitions of admissibility	and preservativity

 $A \models_{\Gamma}^{\mathsf{T}} B \quad \text{iff} \quad \forall E \in \Gamma(\mathsf{T} \vdash E \to A \Rightarrow \mathsf{T} \vdash E \to B).$

 $\hat{\theta}$ is same as θ on the non-modal language and $\hat{\theta}(\Box B) := \Box B$.

By definition it can be inferred that $A \models_{\Gamma}^{\mathsf{T}} B$ implies $A \models_{\Gamma}^{\mathsf{T}} B$, however the converse may not hold. As a counterexample let Aand B two different variables and $\Gamma := \{\top\}$ and $\mathsf{T} = \mathsf{IPC}$. Then we have $A \models_{\Gamma}^{\mathsf{T}} B$ and not $A \models_{\Gamma}^{\mathsf{T}} B$.

Theorem

 $\begin{array}{c} \mbox{Preliminaries} \\ \mbox{Projectivity, Unification and admissibility (\mathcal{L}_0)} \\ \mbox{Preservativity and relative admissibility (\mathcal{L}_0)} \\ \mbox{Provability Semantics} \\ \mbox{iGLH: The Provability logic of HA} \\ \mbox{References} \end{array} \begin{array}{c} \mbox{Projectivity and sets of propositions} \\ \mbox{Definition} \\ \mbox{Axioms} \\ \mbox{Soundness theorems} \\ \mbox{Greatest lower bound} \\ \mbox{Axiomatization} \\ \mbox{iGLH}(\Gamma, T) \mbox{ and iPH and some properties} \end{array}$

Some more notations

•
$$\mathsf{P}^\mathsf{T} := \{ A : \mathsf{T} \vdash A \to B \lor C \Rightarrow \mathsf{T} \vdash A \to B \text{ or } \mathsf{T} \vdash A \to C \}.$$

•
$$\Gamma^{\vee} := \{ \bigvee \Delta : \emptyset \neq \Delta \subseteq_{\text{fin}} \Gamma \}.$$

We may omit T from notations P^{T} and C^{T} .

3

Given a logic T, the logic [T] proves statements $A \triangleright B$ for A and B in the language of T and has the following axioms and rules:

Aximos

$$Ax: A \rhd B, \text{ for every } \mathsf{T} \vdash A \to B.$$

Rules

$$\frac{A \triangleright B}{A \triangleright B \land C} \operatorname{Conj} \qquad \qquad \frac{A \triangleright B}{A \triangleright C} \operatorname{Cut}$$

These axioms and rule are not interesting, because $[\mathsf{T}] \vdash A \triangleright B$ iff $\mathsf{T} \vdash A \rightarrow B$.

イロト イポト イヨト イヨト 二日
iGLH: The Provability logic of HA References GLH: The Provability logic of HA References GLH: The Provability logic of HA References

Extra axioms for preservativity and admissibility

Le:
$$A \rhd \Box A$$
 for every $A \in \mathcal{L}_{\Box}$.
Le⁻: $A \rhd \Box A$ for every $A \in \mathcal{L}_0(\mathsf{parb})$.
A: $A \rhd \hat{\theta}(A)$, for every substitution θ .
V(Δ) : $B \to C \rhd \bigvee_{i=1}^{n+m} \{B\}_{\Delta}(E_i)$, in which $B = \bigwedge_{i=1}^n (E_i \to F_i)$
and $C = \bigvee_{i=n+1}^{n+m} E_i$, and
 $\{A\}_{\Delta}(B) := \begin{cases} B & : B \in \Delta \\ A \to B & : \text{ otherwise} \end{cases}$

$$\frac{B \triangleright A \quad C \triangleright A}{B \lor C \triangleright A} \text{Disj} \qquad \frac{A \triangleright B \quad (C \in \Delta)}{C \to A \triangleright C \to B} \text{Mont}(\Delta)$$

$$\llbracket \mathsf{T}, \Delta \rrbracket := [\mathsf{T}] + \mathrm{Disj} + \mathrm{Mont}(\Delta) + \mathsf{V}(\Delta),$$

$$\llbracket \mathsf{T}, \Delta \rrbracket \mathsf{Le} := \llbracket \mathsf{T}, \Delta \rrbracket + \mathsf{Le} \quad \text{and} \quad \llbracket \mathsf{T}, \Delta \rrbracket \mathsf{Le}^- := \llbracket \mathsf{T}, \Delta \rrbracket + \mathsf{Le}^-.$$

Lemma

$$\mathsf{T} \subseteq \mathsf{T}' \text{ and } \Delta \subseteq \Delta' \text{ implies } \llbracket \mathsf{T}, \Delta \rrbracket \subseteq \llbracket \mathsf{T}', \Delta' \rrbracket.$$

Lemma

$$\models_{\Gamma}^{\mathsf{T}} = \models_{\Gamma^{\vee}}^{\mathsf{T}} and \models_{\Gamma}^{\mathsf{T}} = \models_{\Gamma^{\vee}}^{\mathsf{T}}.$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

12

 $\begin{array}{c} \mbox{Preliminaries} \\ \mbox{Projectivity, Unification and admissibility (\mathcal{L}_0)} \\ \mbox{Preservativity and relative admissibility (\mathcal{L}_0)} \\ \mbox{Provability Semantics} \\ \mbox{iGLH: The Provability logic of HA} \\ \mbox{References} \end{array} \begin{array}{c} \mbox{Projectivity and sets of propositions} \\ \mbox{Definition} \\ \mbox{Soundness theorems} \\ \mbox{Greatest lower bound} \\ \mbox{Axiomatization} \\ \mbox{iGLH}(\Gamma, T) \mbox{ and iPH and some properties} \end{array}$

Intuitionistic submodel property

Given two Kripke models $\mathcal{K} = (W, \preccurlyeq, \sqsubset, V)$ and $\mathcal{K}' = (W', \preccurlyeq', \sqsubset', V')$, we say that \mathcal{K}' is an intuitionistic submodel of \mathcal{K} (notation $\mathcal{K}' \leq \mathcal{K}$) iff $W = W', \sqsubset = \sqsubset', V = V'$ and $\preccurlyeq' \subseteq \preccurlyeq$. A class \mathscr{K} of Kripke models has intuitionistic submodel property, if $\mathcal{K}' \leq \mathcal{K} \in \mathscr{K}$ implies $\mathcal{K}' \in \mathscr{K}$. A modal logic T is said to have intuitionistic submodel property iff it is sound and complete for some class \mathscr{K} of good Kripke models with intuitionistic submodel property.

	$\begin{array}{c} & \mbox{Preliminaries}\\ \mbox{Projectivity, Unification and admissibility } (\mathcal{L}_0)\\ & \mbox{Preservativity and relative admissibility } (\mathcal{L}_0)\\ & \mbox{Provability Semantics}\\ & \mbox{iGLH: The Provability logic of HA}\\ & \mbox{References} \end{array}$	Projectivity and sets of propositions Definition Axioms Soundness theorems Greatest lower bound Axiomatization iGLH(Γ, T) and iPH and some properties
--	---	---

General soundness: preservativity

Theorem (Soundness)

[T] is sound for preservativity interpretations, i.e. $[T] \vdash A \rhd B$ implies $A \models_{\Gamma}^{T} B$ for every set Γ of propositions and every logic T. Moreover

- if Γ is T-complete, then Le is sound,
- if Γ is T-prime, then Disj is also sound,
- if Γ is closed under Δ-conjunctions, then Mont(Δ) is sound.
- if T has intuitionistic submodel property and Γ ⊆ NNIL and Δ ⊆ atomb then V(Δ) is sound.
- if Γ ⊆ L₀(parb) and T is closed under outer substitutions, then A is also sound.

Preliminaries Projectivity, Unification and admissibility (\mathcal{L}_0) Preservativity and relative admissibility (\mathcal{L}_0) Provability Semantics iGLH: The Provability logic of HA References	Projectivity and sets of propositions Definition Axioms Soundness theorems Greatest lower bound Axiomatization iGLH(Γ , T) and iPH and some properties

General soundness: admissibility

Theorem (Soundness)

[T] is sound for admissibility interpretations, i.e. $[T] \vdash A \rhd B$ implies $A \vdash_{\Gamma}^{\tau} B$ for every set Γ of propositions and every logic T which is closed under outer substitutions. Moreover

- if Γ is T-complete, then Le⁻ is sound,
- if Γ is T-prime, then Disj is also sound.
- if Γ is closed under outer substitutions of Δ-conjunctions,
 i.e. A ∈ Γ and B ∈ Δ implies A ∧ θ(B) ∈ Γ (up to
 T-provable equivalence relation), then Mont(Δ) is sound.
- if T has intuitionistic submodel property and Γ ⊆ NNIL and Δ ⊆ parb then V(Δ) is sound.

A B F A B F

 $\begin{array}{c} & \operatorname{Preliminaries} \\ \operatorname{Projectivity, Unification and admissibility } (\mathcal{L}_{O}) \\ & \operatorname{Preservativity and relative admissibility } (\mathcal{L}_{D}) \\ & \operatorname{Provability Semantics} \\ & \operatorname{iGLH: The Provability logic of HA} \\ & \operatorname{References} \end{array}$

Projectivity and sets of propositions Definition Axioms Soundness theorems Greatest lower bound Axiomatization iGLH(Γ, T) and iPH and some properties

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

On Provability Logic of HA

Mojtaba Mojtahedi (University of Tehran)

University of Tehran

February 1, 2023

 $\begin{array}{c} \mbox{Preliminaries} \\ \mbox{Projectivity, Unification and admissibility (\mathcal{L}_0) } \\ \mbox{Preservativity and relative admissibility (\mathcal{L}_0) } \\ \mbox{Provability Semantics} \\ \mbox{iGLH: The Provability logic of HA} \\ \mbox{References} \end{array} \begin{array}{c} \mbox{Projectivity and sets of propositions} \\ \mbox{Definition} \\ \mbox{Soundness theorems} \\ \mbox{Greatest lower bound} \\ \mbox{Axiomatization} \\ \mbox{iGLH}(\Gamma, T) \mbox{ and some properties} \end{array}$

Greatest lower bound (glb)

- B is a (Γ, T) -lb for A if:
 - $\begin{array}{ccc} \bullet & B \in \Gamma, \\ \bullet & \mathsf{T} \vdash B \end{array}$
 - **2** $\ \mathsf{T} \vdash B \to A.$
- B is the (Γ, T) -glb for A, if for every (Γ, T) -lb B' for A we have $\mathsf{T} \vdash B' \to B$.
- Up to T-provable equivalence relation, such glb is unique and we annotate it as $\lfloor A \rfloor_{\Gamma}^{\mathsf{T}}$.
- (Γ, T) is downward compact, if every $A \in \mathcal{L}_{\Box}$ has a (Γ, T) -glb $\lfloor A \rfloor_{\Gamma}^{\mathsf{T}}$.
- If $\lfloor A \rfloor_{\Gamma}^{\mathsf{T}}$ can be effectively computed, we say that (Γ, T) is recursively downward compact.

< ロト < 同ト < ヨト < ヨト -

 $\begin{array}{c} & \label{eq:projectivity} & \mbox{Projectivity} & \mbox{and admissibility} (\mathcal{L}_{Ω}) \\ \hline Preservativity & \mbox{and relative admissibility} (\mathcal{L}_{Ω}) \\ \hline Provability & \mbox{Semantics} \\ & \mbox{iGLH: The Provability logic of HA} \\ & \mbox{References} \end{array} & \begin{array}{c} Projectivity & \mbox{and sets of propositions} \\ Definition \\ Soundness & \mbox{teorems} \\ Soundness & \mbox{teorems} \\ Greatest & \mbox{ownatization} \\ & \mbox{iGLH}(\Gamma, T) & \mbox{and iPH and some properties} \end{array}$

 $(SN, iGLC_a)$ is rsdc

Theorem (Visser [2002])

(NNIL, IPC) is recursively downward compact.

 $\lfloor A \rfloor_{\tt NNIL}^{\tt IPC}$ is named A^* in [Visser, 2002], the so called Visser's <code>NNIL</code> algorithm.

Question

One may similarly define the notion of least upper bounds and upward compactness. Does downward compactness imply upward compactness? $\begin{array}{c} & \mbox{Preliminaries} & \mbox{Pro}\\ \mbox{Projectivity, Unification and admissibility} (\mathcal{L}_0) & \mbox{Defi}\\ \mbox{Preservativity and relative admissibility} (\mathcal{L}_0) & \mbox{Sou}\\ \mbox{Provability Semantics} & \mbox{Sou}\\ \mbox{iGLH: The Provability logic of HA} & \mbox{Axi}\\ \mbox{References} & \mbox{Axi} & \mbox{Cre}\\ \end{array}$

(Γ, T) -glb and \models_{Γ}

Theorem

- B is the (Γ, T) -glb for A iff
 - $B \in \Gamma$,
 - $\mathsf{T} \vdash B \to A$,
 - $A \stackrel{\mathrm{\tiny T}}{\approx} B.$

Hence we have $A \stackrel{\mathsf{T}}{\approx} \lfloor A \rfloor_{\Gamma}^{\mathsf{T}}$.

Corollary

If
$$\lfloor A \rfloor_{\Gamma}^{\mathsf{T}}$$
 exists, then for every $B \in \mathcal{L}_{\Box}$ we have

$$\mathsf{T} \vdash \left\lfloor A \right\rfloor_{\Gamma}^{\mathsf{T}} \to B \quad iff \quad A \models_{r}^{\mathsf{T}} B.$$

Projectivity and sets of propositions Definition Axioms Soundness theorems **Greatest lower bound** Axiomatization iGLH(Γ, T) and iPH and some properties

$\begin{array}{c} & \label{eq:projectivity} & \mbox{Preliminaries} & \mbox{Projectivity}, & \mbox{Unification and admissibility} (\mathcal{L}_0) \\ \hline & \mbox{Preservativity and relative admissibility} (\mathcal{L}_0) \\ & \mbox{Provability} & \mbox{Soundness} \\ & \mbox{iGLH: The Provability logic of HA} \\ & \mbox{References} & \mbox{References} \end{array}$	ty and sets of propositions theorems ower bound ation and iPH and some properties
--	--

Question

The glb may be expressed via preservativity relation \models_{r}^{Σ} . One may think of its twin sister which best suites for lub's:

$$A \stackrel{*}{\models} B \quad iff \quad \forall E \in \Gamma(\mathsf{T} \vdash A \to E \Rightarrow \mathsf{T} \vdash B \to E).$$

We ask for an axiomatization for $\stackrel{*}{\models}_{\Gamma}$ when we let T = IPC and $\Gamma = NNIL$.

$\begin{array}{c} & \mbox{Preliminaries}\\ \mbox{Projectivity, Unification and admissibility} (\mathcal{L}_0)\\ \hline \mbox{Preservativity and relative admissibility} (\mathcal{L}_0)\\ \hline \mbox{Provability Semantics}\\ \hline \mbox{iGLH: The Provability logic of HA}\\ \hline \mbox{References} \end{array}$	Projectivity and sets of propositions Definition Axioms Soundness theorems Greatest lower bound Axiomatization iGLH(Γ, Τ) and iPH and some properties

Normal forms

Define Γ -NF₀ as the set of propositions $B \in \mathcal{L}_{\Box}$ with either $B \in \Gamma$ or $\Box B \in \Gamma$. Then define the set Γ -NF of propositions in Γ -Normal Form as follows:

$$\Gamma\text{-}\mathsf{NF} := \{ A \in \mathcal{L}_{\Box} : \forall \, \Box B \in \mathsf{sub}(A) \ B \in \Gamma\text{-}\mathsf{NF}_0 \}.$$

$\begin{array}{c} & \mbox{Preliminaries}\\ \mbox{Projectivity, Unification and admissibility } (\mathcal{L}_0)\\ & \mbox{Preservativity and relative admissibility } (\mathcal{L}_0)\\ & \mbox{Provability Semantics}\\ & \mbox{iGLH: The Provability logic of HA}\\ & \mbox{References} \end{array}$	Projectivity and sets of propositions Definition Axioms Soundness theorems Greatest lower bound Axiomatization iGLH(Γ, T) and iPH and some properties

Iterating glb's nested inside \Box

We say that (Γ, T) is (recursively) *strong* downward compact, if it is (recursively) downward compact and for every $\Box B \in \mathsf{sub}(\lfloor A \rfloor_{\Gamma}^{\mathsf{T}})$ either we have $\Box B \in \mathsf{sub}(A)$ or $B \in \Gamma\text{-NF}_0$. We also inductively define $\llbracket A \rrbracket_{\Gamma}^{\mathsf{T}}$:

• $[\![a]\!]_{\Gamma}^{\mathsf{T}} = a$ for every atomic a.

•
$$\llbracket \ \rrbracket_{\Gamma}^{\mathsf{T}}$$
 commutes with $\{\lor, \land, \rightarrow\}$.

•
$$\llbracket \Box A \rrbracket_{\Gamma}^{\mathsf{T}} := \Box \lfloor \llbracket A \rrbracket_{\Gamma}^{\mathsf{T}} \rfloor_{\Gamma}^{\mathsf{T}}$$
. • $\mathsf{H}(\Gamma, \mathsf{T})$.

Lemma

If (Γ, T) is strong downward compact and $\mathsf{T} \supseteq \mathsf{i}\mathsf{K}\mathsf{4}$, then for every $A \in \mathcal{L}_{\Box}$ we have $[\![A]\!]_{\Gamma}^{\mathsf{T}} \in \Gamma\text{-}\mathsf{NF}$ and $\mathsf{H}(\Gamma, \mathsf{T}) \vdash_{\mathsf{T}} A \leftrightarrow [\![A]\!]_{\Gamma}^{\mathsf{T}}$.

$iGLH(\Gamma, T)$ and iPH and some properties

Extension property

A class \mathscr{M} of rooted Kripke models is said to has *extension* property if for every finite set $\mathscr{K} \subseteq \mathscr{M}$ there is some finite set of rooted Kripke models \mathscr{K}' such that a variant of $\sum(\mathscr{K}, \mathscr{K}')$ belongs to \mathscr{M} .

Before we continue with the axiomatization and decidability of several preservativities, let us see some preliminaries.

Theorem

Let T has extension property. Then

•
$$\mathsf{N}(\Box) = \mathsf{PN}(\Box)^{\vee}$$
 and $\mathsf{SN}(\Box) = \mathsf{SPN}(\Box)^{\vee}$.

•
$$N = PN^{\vee}$$
 and $SN = SPN^{\vee}$, whenever $T \supseteq iK4C_a$.

Corollary

$$\downarrow_{\mathfrak{s}_{\mathsf{N}(\square)}}^{\mathsf{T}} = \not_{\mathfrak{s}_{\mathsf{P}_{\mathsf{N}(\square)}}}^{\mathsf{T}} and \downarrow_{\mathfrak{s}_{\mathsf{N}(\square)}}^{\mathsf{T}} = \not_{\mathfrak{s}_{\mathsf{P}_{\mathsf{N}(\square)}}}^{\mathsf{T}} and \not_{\mathfrak{s}_{\mathsf{N}(\square)}}^{\mathsf{T}} = \not_{\mathfrak{s}_{\mathsf{P}_{\mathsf{N}(\square)}}}^{\mathsf{T}} and if$$

$$\mathsf{T} \supseteq \mathsf{i}\mathsf{K}\mathsf{4}\mathsf{C}_{\mathsf{a}} then \not_{\mathfrak{s}_{\mathsf{N}}}^{\mathsf{T}} = \not_{\mathfrak{s}_{\mathsf{P}_{\mathsf{N}}}}^{\mathsf{T}} \cdot \mathfrak{s}_{\mathfrak{s}_{\mathsf{P}_{\mathsf{N}}}}^{\mathsf{T}} = \not_{\mathfrak{s}_{\mathsf{P}_{\mathsf{N}}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{P}_{\mathsf{N}}}}^{\mathsf{T}} = \not_{\mathfrak{s}_{\mathsf{P}_{\mathsf{N}}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{P}_{\mathsf{N}}}}^{\mathsf{T}} = \not_{\mathfrak{s}_{\mathsf{P}_{\mathsf{N}}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{P}_{\mathsf{N}}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{N}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{N}}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{N}}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{N}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{N}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{N}}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{N}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{N}}}^{\mathsf{T}}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{N}}}^{\mathsf{T}} \bullet \mathfrak{s}_{\mathfrak{s}_{\mathsf{N}}}^{\mathsf$$

$\begin{array}{llllllllllllllllllllllllllllllllllll$	y and sets of propositions theorems wer bound t tion and iPH and some properties
--	---

Theorem

 $A^{\mathsf{h}} := (A^*)^{\Box} = \lfloor A \rfloor_{\mathsf{SN}}^{\mathsf{iGLC}_{\mathsf{a}}} \text{ and hence } (\mathsf{SN}, \mathsf{iGLC}_{\mathsf{a}}) \text{ is recursively} \\ strong downward compact. Moreover [[iGLC_{\mathsf{a}}, \mathsf{atomb}]] \mathsf{Le} \vdash A \triangleright A^{\mathsf{h}}.$

Proof.

Derived by (rdc of (NNIL, IPC) from Visser [2002].

• • = • • = •

$\begin{array}{c c} & \operatorname{Preliminaries} & \operatorname{Proje} \\ \operatorname{Projectivity, Unification and admissibility} (\mathcal{L}_0) & \operatorname{Proseivativity} and relative admissibility} (\mathcal{L}_0) & \operatorname{Axion} \\ \operatorname{Provability Semantics} & \operatorname{Grean} \\ \operatorname{iGLH: The Provability logic of HA} & \operatorname{Axion} \\ \operatorname{References} & \operatorname{iGLH} \end{array}$	ectivity and sets of propositions nition ms dness theorems test lower bound matization (Γ, T) and iPH and some properties
--	---

$$\begin{array}{rcl} \mathsf{Ax}: & A \rhd B, \text{ for every } \mathsf{iGLC}_{\mathsf{a}} \vdash A \to B. \\ \mathsf{Le:} & A \rhd \Box A \text{ for every } A \in \mathcal{L}_{\Box}. \\ \mathsf{V}(\mathsf{atomb}): & B \to C \rhd \bigvee_{i=1}^{n+m} \{B\}_{\mathsf{atomb}}(E_i), \text{ in which} \\ & B = \bigwedge_{i=1}^n (E_i \to F_i) \text{ and } C = \bigvee_{i=n+1}^{n+m} E_i, \text{ and} \\ & \{A\}_{\mathsf{atomb}}(B) := \begin{cases} B & : B \in \mathsf{atomb} \\ A \to B & : \mathsf{otherwise} \end{cases} \\ & \hline A \rhd B \land C \\ \hline A \triangleright B \land C \\ \hline B \triangleright A \\ \hline B \lor C \triangleright A \end{array} \text{ Disj} \qquad \begin{array}{l} A \triangleright B \\ \hline A \triangleright B \\ \hline C \to A \triangleright C \\ \hline C \to A \triangleright C \\ \hline C \to A \\ \hline \end{array} \text{ Conditional conditions} \end{array}$$

52/92 Mojtaba Mojtahedi (University of Tehran) Logic Online seminar (30 May/2 June 2022)

Preliminaries	
Projectivity, Unification and admissibility (\mathcal{L}_0)	Definition
Preservativity and relative admissibility (\mathcal{L}_{\Box})	
Provability Semantics	
iGIH: The Provability logic of HA	
References	Axiomatization
10101010005	$iGLH(\Gamma,T)$ and iPH and some properties

Theorem

$$[\mathsf{iGLC}_\mathsf{a},\mathsf{atomb}]\mathsf{Le}= \underset{s_\mathsf{N}}{\overset{\mathsf{iGLC}_\mathsf{a}}{\approx}} = \underset{s_\mathsf{N}'}{\overset{\mathsf{iGLC}_\mathsf{a}}{\approx}} = \underset{s_\mathsf{N}}{\overset{\mathsf{iGLC}_\mathsf{a}}{\approx}}$$

Moreover all above relations are decidable.

Proof. • Prime factorization and • $\overleftarrow{P} = \overleftarrow{P}$ imply $\overleftarrow{P}_{SN}^{GLC_a} = \overleftarrow{P}_{SN}^{GLC_a} = \overleftarrow{P}_{SN}^{GLC_a} = \overleftarrow{P}_{SN}^{GLC_a}$. • General soundenss implies $[[iGLC_a, atomb]]Le \subseteq \overleftarrow{P}_{SN}^{GLC_a}$. To show $\overleftarrow{P}_{SN}^{GLC_a} \subseteq [[iGLC_a, atomb]]Le$, let $A \not|_{SN}^{GLC_a} = B$. Then $A^h \to B$ and hence $[[iGLC_a, atomb]]Le \vdash A^h \rhd B$. Since $[[iGLC_a, atomb]]Le \vdash A \rhd A^h$, Cut implies desired result.

$\triangleleft \downarrow SN(\Box)^{\vee}$ -rsdc

- 31

< ロト < 同ト < ヨト < ヨト -

Theorem

 $(\downarrow \mathsf{N}(\Box)^{\lor}, \mathsf{iGL})$ is recursively strong downward compact. Moreover $\llbracket \mathsf{iGL}, \mathsf{parb} \rrbracket \vdash A \rhd \lfloor A \rfloor_{\downarrow \mathsf{N}(\Box)^{\lor}}^{\mathsf{iGL}}$.

Proof sketch.

Given A, one must treat outer occurrences of \Box 's as parameters, and then $\bigvee \Pi$ in \bullet NNIL(par)-projective approximation will work as $[A]_{\downarrow N(\Box)^{\lor}}^{iGL}$.

$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	tivity and sets of propositions tion 18 Iness theorems est lower bound natization C, T) and iPH and some properties
--	---

$$\begin{array}{rcl} \mathsf{Ax}: & A \rhd B, \text{ for every } \mathsf{iGLC}_{\mathsf{a}} \vdash A \to B. \\ \mathsf{V}(\mathsf{parb}): & B \to C \rhd \bigvee_{i=1}^{n+m} \{B\}_{\mathsf{parb}}(E_i), \text{ in which } B = \bigwedge_{i=1}^n (E_i \to F_i) \\ & \text{and } C = \bigvee_{i=n+1}^{n+m} E_i, \text{ and} \\ & \{A\}_{\mathsf{parb}}(B) := \begin{cases} B & : B \in \mathsf{parb} \\ A \to B & : \mathsf{otherwise} \end{cases} \\ \hline A \to B & A \rhd C \\ \hline A \rhd B \land C \\ \hline B \rhd A & C \triangleright A \\ \hline B \lor C \rhd A \\ \hline C \to A \rhd C \to B \end{cases} \begin{array}{r} \hline A \rhd B & B \rhd C \\ \hline A \rhd B & (C \in \mathsf{parb}) \\ \hline C \to A \rhd C \to B \\ \hline \end{array} \end{array}$$

Proliminarios	
Projectivity Unification and admissibility (\mathcal{L}_{-})	Definition
(\mathcal{L}_0)	Axioms
Preservativity and relative admissibility (\mathcal{L}_{\Box})	Soundness theorems
Provability Semantics	
iGLH: The Provability logic of HA	
References	Axiomatization
	$iGLH(\Gamma,T)$ and iPH and some properties

Theorem

All are decidable:

 $\llbracket \mathsf{iGL},\mathsf{parb} \rrbracket = {\overset{\mathsf{iGL}}{\underset{\mathsf{k}_{\mathsf{N}(\mathsf{D})}}{\underset{\mathsf{m}_{\mathsf{D}}}{\underset{\mathsf{m}_{\mathsf{D}}}{\underset{\mathsf{m}_{\mathsf{m}}}}}}{}}}}}}}}}}}} = \overset{\mathsf{idel}}{\overset{\mathsf{idel}}{\underset{\mathsf{m}_{\mathsf{m}}}{\underset{\mathsf{m}_{\mathsf{m}}}{\underset{\mathsf{m}_{\mathsf{m}}}}}}}}}}} = \overset{\mathsf{idel}}}{\overset{\mathsf{idel}}{\underset{\mathsf{m}_{\mathsf{m}}}{\underset{\mathsf{m}_{\mathsf{m}}}}{\underset{\mathsf{m}_{\mathsf{m}}}}{\underset{\mathsf{m}_{\mathsf{m}}}}}}}}}}}}$

Proof sketch.

$\triangleleft C \downarrow SN(\Box)^{\vee} - rsdc$

Theorem

 $(\downarrow SN(\Box)^{\lor}, iGL)$ is recursively strong downward compact. Moreover $[iGL, parb]Le^{-} \vdash A \rhd \lfloor A \rfloor_{\downarrow SN(\Box)^{\lor}}^{iGL}$.

Proof sketch.

Given
$$A$$
, one first compute $\lfloor A \rfloor_{\downarrow N(\Box)^{\vee}}^{iGL}$ \bullet . Let B is its $N(\Box)^{\vee}$ -projection and define $\lfloor A \rfloor_{\downarrow SN(\Box)^{\vee}}^{iGL} := \lfloor A \rfloor_{\downarrow N(\Box)^{\vee}}^{iGL} \wedge B^{\Box}$. \Box

$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	rojectivity and sets of propositions efinition xioms pundness theorems reatest lower bound xiomatization $\mathbf{L}(\Gamma, T)$ and iPH and some properties
--	---

$$\begin{array}{rcl} \mathsf{Ax}: & A \rhd B, \text{ for every } \mathsf{iGLC}_{\mathsf{a}} \vdash A \to B. \\ \texttt{Le}^-: & A \rhd \Box A \text{ for every } A \in \mathcal{L}_0(\mathsf{parb}). \\ \mathsf{V}(\mathsf{parb}): & B \to C \rhd \bigvee_{i=1}^{n+m} \{B\}_{\mathsf{parb}}(E_i), \text{ in which } B = \bigwedge_{i=1}^n (E_i \to F_i) \\ \text{ and } C = \bigvee_{i=n+1}^{n+m} E_i, \text{ and} \\ & \{A\}_{\mathsf{parb}}(B) := \begin{cases} B & : B \in \mathsf{parb} \\ A \to B & : \text{ otherwise} \end{cases} \\ \hline A \to B & A \rhd C \\ A \to B \land C & C \text{ onj} \\ \hline B \rhd A & C \rhd A \\ B \lor C \rhd A & Disj \end{cases} \quad \begin{array}{r} A \rhd B & B \rhd C \\ A \rhd B & (C \in \mathsf{parb}) \\ \hline C \to A \rhd C \to B \end{cases} \end{array}$$

58 / 92 Mojtaba Mojtahedi (University of Tehran) Logic Online seminar (30 May/2 June 2022)

A B K A B K

3

 $B \lor C \vartriangleright A$

Preliminaries	
Projectivity Unification and admissibility (\mathcal{L}_{-})	Definition
(\mathcal{L}_0)	Avions
Preservativity and relative admissibility (\mathcal{L}_{\Box})	
Provability Semantics	
iGLH: The Provability logic of HA	Greatest lower bound
Beferences	Axiomatization
	$iGLH(\Gamma,T)$ and iPH and some properties

Theorem

$$\begin{split} \llbracket \mathsf{iGL},\mathsf{parb} \rrbracket \mathsf{Le}^{-} &= \lvert_{\downarrow \mathsf{SN}(\square)}^{\mathsf{iGL}} &= \lvert_{\downarrow \mathsf{SN}(\square)^{\vee}}^{\mathsf{iGL}} = \lvert_{\downarrow \mathsf{SPN}(\square)}^{\mathsf{iGL}} = \lvert_{\downarrow \mathsf{SPN}(\square)^{\vee}}^{\mathsf{iGL}} = \\ &= \lvert_{\mathsf{SN}(\square)}^{\mathsf{iGL}} = \lvert_{\mathsf{SN}(\square)^{\vee}}^{\mathsf{iGL}} = \lvert_{\mathsf{SPN}(\square)}^{\mathsf{iGL}} = \lvert_{\mathsf{SPN}(\square)^{\vee}}^{\mathsf{iGL}} . \end{split}$$

Proof sketch.

Preliminaries	
Projectivity Unification and admissibility (f_{a})	Definition
Process time and relation and admissibility (\mathcal{L}_0)	Axioms
Preservativity and relative admissibility (\mathcal{L}_{\Box})	Soundness theorems
Provability Semantics	Greatest lower bound
GLH: The Provability logic of HA	Axiomatization
References	
	IGLH(I, I) and IPH and some properties

Theorem

 $(\mathsf{C}\downarrow\mathsf{SN}(\Box)^{\lor},\mathsf{iGL})$ is recursively strong downward compact. Moreover $\llbracket \mathsf{iGL},\mathsf{parb} \rrbracket \mathsf{Le} \vdash A \rhd \lfloor A \rfloor_{\mathsf{C}\downarrow\mathsf{SN}(\Box)^{\lor}}^{\mathsf{iGL}}$.

Proof sketch.

Given A, one first compute $\lfloor A \rfloor_{\downarrow SN(\Box)^{\vee}}^{IGL}$ \bigcirc . Then define

$$[A]^{\mathrm{iGL}}_{\mathrm{C}\downarrow\mathrm{SN}(\square)^{\vee}}:=\boxdot[A]^{\mathrm{iGL}}_{\downarrow\mathrm{SN}(\square)^{\vee}}$$

$\begin{array}{c} \mbox{Preliminaries} \\ \mbox{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \mbox{Preservativity and relative admissibility } (\mathcal{L}_0) \\ \mbox{Provability Semantics} \\ \mbox{iGLH: The Provability logic of HA} \\ \mbox{References} \\ \mbox{References} \end{array} \begin{array}{c} \mbox{Projectivity} \\ \mbox{Definition} \\ \mbox{Soundness} \\ \mbox{Greatest h} \\ \mbox{Axiomatiz} \\ \mbox{iGH}(\Gamma, T) \end{array}$	y and sets of propositions theorems ower bound ation and iPH and some properties
---	---

$$\begin{array}{rcl} \mathsf{Ax}: & A \rhd B, \text{ for every } \mathsf{iGLC}_{\mathsf{a}} \vdash A \to B. \\ \mathsf{Le:} & A \rhd \Box A \text{ for every } A \in \mathcal{L}_{\Box}. \\ \mathsf{V}(\mathsf{parb}): & B \to C \rhd \bigvee_{i=1}^{n+m} \{B\}_{\mathsf{parb}}(E_i), \text{ in which } B = \bigwedge_{i=1}^n (E_i \to F_i) \\ & \text{and } C = \bigvee_{i=n+1}^{n+m} E_i, \text{ and} \\ & \{A\}_{\mathsf{parb}}(B) := \begin{cases} B & : B \in \mathsf{parb} \\ A \to B & : \text{ otherwise} \end{cases} \\ \hline \begin{array}{c} A \rhd B & A \rhd C \\ A \rhd B \land C & C \rhd A \\ \hline \end{array} \mathsf{Disj} & \begin{array}{c} A \rhd B & B \rhd C \\ A \rhd B & (C \in \mathsf{parb}) \\ \hline \end{array} \mathsf{C} \to A \rhd C \to B \end{cases} \end{array}$$

イロト イロト イヨト イヨト 三日

$\blacktriangleleft \mathsf{iGLH} \subseteq \mathsf{iPH}$

Theorem

$$[\![_{iGL, \; parb}]\!]_{Le} = \underset{C\downarrow SN(\square)}{\overset{iGL}{\longrightarrow}} = \underset{C\downarrow SN(\square)^{\vee}}{\overset{iGL}{\longrightarrow}} = \underset{C\downarrow SPN(\square)}{\overset{iGL}{\longrightarrow}} = \underset{C\downarrow SPN(\square)}{\overset{iGL}{\longrightarrow}}$$

Moreover all mentioned relations are decidable.

Proof. • Prime factorization and • $\not\models = \not\models$ imply $\not\models_{c\downarrow SN(\Box)}^{icl} = \not\models_{c\downarrow SN(\Box)}^{icl} = \not\models_{c\downarrow SPN(\Box)}^{icl} = \not\models_{c\downarrow SPN(\Box)}^{icl} \cdot \bullet$ General soundenss implies $\llbracket _{fcl, parb} \rrbracket_{te} \subseteq \not\models_{c\downarrow SPN(\Box)}^{icl} \cdot \text{ To show } \not\models_{c\downarrow SN(\Box)}^{icl} \vee \subseteq \llbracket \text{iGL}, \text{parb} \rrbracket \text{Le, let}$ $A \not\models_{c\downarrow SN(\Box)}^{icl} B.$ Hence $\text{iGL} \vdash \lfloor A \rfloor_{c\downarrow SN(\Box)}^{icl} \to B$ and thus $\llbracket \text{iGL}, \text{parb} \rrbracket \text{Le} \vdash \lfloor A \rfloor_{c\downarrow SN(\Box)}^{iGL} \triangleright B.$ Since $\llbracket \text{iGL}, \text{parb} \rrbracket \text{Le} \vdash A \triangleright \lfloor A \rfloor_{c\downarrow SN(\Box)}^{iGL} \forall$ we are done.

62/92 Mojtaba Mojtahedi (University of Tehran) Logic (

Logic Online seminar (30 May/2 June 2022)

Preliminaries	
Projectivity Unification and admissibility (f_{a})	Definition
Decomposition and notation admissibility (\mathcal{L}_0)	Axioms
Γ reservativity and relative admissibility (\mathcal{L}_{\Box})	Soundness theorems
Provability Semantics	Greatest lower bound
IGLH: The Provability logic of HA	Axiomatization
References	
	IGLH(1, 1) and IPH and some properties

Theorem

 $(SN(\Box), iGL)$ is recursively strong downward compact. Moreover $\llbracket iGL, parb \rrbracket LeA \vdash A \rhd \lfloor A \rfloor_{SN(\Box)}^{iGL}$.

A flavour of proof.

In the computation of $\lfloor A \rfloor_{\mathsf{SN}(\Box)}^{\mathsf{iGL}}$ is not just an add on for the Visser's NNIL-algorithm. One must go inside that algorithm and make some additional instruction. $x \to B$ is approximated by $\lfloor B[\hat{x}:\top] \rfloor_{\mathsf{SN}(\Box)}^{\mathsf{iGL}}$. $B \to x$ is approximated by $\lfloor \neg B \rfloor_{\mathsf{SN}(\Box)}^{\mathsf{iGL}}$.

$\begin{array}{llllllllllllllllllllllllllllllllllll$
--

$$\begin{array}{rcl} \mathsf{Ax} : & A \rhd B, \text{ for every } \mathsf{i}\mathsf{GLC}_{\mathsf{a}} \vdash A \to B. \\ \mathsf{Le:} & A \rhd \Box A \text{ for every } A \in \mathcal{L}_{\Box}. \\ \mathsf{A:} & A \rhd \hat{\theta}(A), \text{ for every substitution } \theta. \\ \mathsf{V}(\mathsf{parb}) : & B \to C \rhd \bigvee_{i=1}^{n+m} \{B\}_{\mathsf{parb}}(E_i), \text{ in which } B = \bigwedge_{i=1}^n (E_i \to F_i) \\ \text{ and } C = \bigvee_{i=n+1}^{n+m} E_i, \text{ and} \\ & \{A\}_{\mathsf{parb}}(B) := \begin{cases} B & : B \in \mathsf{parb} \\ A \to B & : \text{ otherwise} \end{cases} \\ \hline \begin{array}{c} A \rhd B & A \rhd C \\ \hline A \rhd B \land C & C \circ A \\ \hline B \lor C \rhd A & \mathsf{Disj} \end{array} & \begin{array}{c} A \rhd B & B \rhd C \\ \hline A \rhd B & (C \in \mathsf{parb}) \\ \hline C \to A \rhd C \to B \end{array} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \textbf{Preservativity and relative admissibility } (\mathcal{L}_0) \\ & \text{Provability Semantics} \\ & \text{iGLH: The Provability logic of HA} \\ & \text{References} \end{array}$	Projectivity and sets of propositions Definition Axioms Soundness theorems Greatest lower bound Axiomatization iGLH(Γ, T) and iPH and some properties

Examples

♦ back to e1

A B F A B F

3

•
$$\lfloor x \rfloor = \bot$$

• $\lfloor A \rfloor = \bot$ if $A \in \mathcal{L}_0(\mathsf{var})$ and A is not a theorem of IPC.

•
$$\lfloor p \to x \rfloor = \neg p$$

- $\bullet \ \lfloor \Box x \to x \rfloor = \neg \Box x$
- $\lfloor \Box x \to y \rfloor = \neg \Box x.$

 $\begin{array}{rl} & \label{eq:projectivity} & \mbox{Preliminaries} & \mbox{Projectivity} & \mbox{unification and admissibility} (\mathcal{L}_0) & \mbox{Definition} & \mbox{Preservativity} & \mbox{admissibility} (\mathcal{L}_0) & \mbox{Definition} & \mbox{Axioms} & \mbox{Soundness theorems} & \mbox{Soundness theorems} & \mbox{Soundness theorems} & \mbox{Greatest lower bound} & \mbox{Axiomatization} & \mbox{GlH}(T, T) & \mbox{and iPH} & \mbox{and some properties} & \mbox{IC}(T, T) & \mbox{and iPH} & \mbox{and some properties} & \mbox{IC}(T, T) & \mbox{and iPH} & \mbox{and some properties} & \mbox{IC}(T, T) & \mbox{and iPH} & \mbox{and some properties} & \mbox{IC}(T, T) & \mbox{and iPH} & \mbox{and some properties} & \mbox{IC}(T, T) & \mbox{and iPH} & \mbox{and some properties} & \mbox{IC}(T, T) & \mbox{Axioms} & \mbox{IC}(T, T) & \mbox{IC}(T, T) & \mbox{Axioms} & \mbox{IC}(T, T) & \mbox{Axioms} & \mbox{IC}(T, T) &$

$\blacktriangleleft \mathsf{iGLH} \subseteq \mathsf{iPH}$

3

・ロト ・四ト ・ヨト ・ヨト

Theorem

$$[\![\mathsf{iGL},\mathsf{parb}]\!]\mathsf{LeA} = \models_{\mathsf{SN}(\square)}^{\mathsf{iGL}} = \models_{\mathsf{SN}(\square)}^{\mathsf{iGL}} = \models_{\mathsf{SN}(\square)}^{\mathsf{iGL}}$$

Moreover all mentioned relations are decidable.

Proof.

Preliminaries	
Projectivity, Unification and admissibility (\mathcal{L}_0)	Dennition
Preservativity and relative admissibility (\mathcal{L}_{\Box})	Soundness theorems
Provability Semantics	Greatest lower bound
IGLH: I ne Provability logic of HA	
References	$iGLH(\Gamma,T)$ and iPH and some properties

I sdc

- Hence $iGLH(\Gamma, T)$ is iGL plus the axiom $H(\Gamma, T)$.
- $\bullet \ \mathsf{iGLH} := \mathsf{iGLH}(\mathsf{C}{\downarrow}\mathsf{SN}(\Box),\mathsf{iGL}). \ (\mathrm{provability} \ \mathrm{logic} \ \mathrm{of} \ \mathsf{HA})$
- $iGLH^{\Box} := iGLH(SN(\Box), iGL)$. (complete but not sound)
- $iGLC_aH_{\sigma} := iGLC_aH(SN, iGLC_a).(\Sigma_1$ -provability logic of HA)

 $\begin{array}{c} \mbox{Preliminaries} \\ \mbox{Projectivity, Unification and admissibility (\mathcal{L}_0) } \\ \mbox{Preservativity and relative admissibility (\mathcal{L}_0) } \\ \mbox{Provability Semantics} \\ \mbox{iGLH: The Provability logic of HA} \\ \mbox{References} \end{array} \qquad \begin{array}{c} \mbox{Projectivity and sets of propositions} \\ \mbox{Definition} \\ \mbox{Axioms} \\ \mbox{Soundness theorems} \\ \mbox{Greatest lower bound} \\ \mbox{Axiomatization} \\ \mbox{iGLH}(\Gamma, T) \mbox{ and iPH and some properties} \end{array}$

On Provability Logic of HA

Mojtaba Mojtahedi (University of Tehran)

University of Tehran

February 1, 2023

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

68/92 Mojtaba Mojtahedi (University of Tehran) Logic Online seminar (30 May/2 June 2022)

$\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and admissibility} (\mathcal{L}_0) \\ \hline \text{Preservativity and relative admissibility} (\mathcal{L}_0) \\ \hline \text{Provability Semantics} \\ \text{iGLH: The Provability logic of HA} \\ & \text{References} \end{array}$	ity and sets of propositions n ss theorems lower bound ization) and iPH and some properties
--	---

Question

Why the PLHA is not simply the following?

 $\mathsf{iGL} \ plus \ \Box A \to \Box B \ for \ every \ A \stackrel{\scriptscriptstyle\mathsf{iGL}}{\sim} B$

- Currently the provability logic of HA is iGL plus $\Box A \to \Box B$ for some A, B satisfying $A \stackrel{\text{\tiny list}}{\sim} B$. This means that $A \stackrel{\text{\tiny list}}{\approx} B$ implies $A \stackrel{\text{\tiny list}}{\sim} B$.
- Moreover, one expects that *only* those admissible rules of iGL belong to the PLHA which HA can formalize and verify them for herself.
- $\Box A \stackrel{\text{\tiny isl}}{\sim} A$ however HA is not able to verify it.
- Similarly following is admissible while HA can not verify: $\Box(A \lor B) \to (\Box A \lor \Box B) \stackrel{\text{\tiny lag}}{\rightarrowtail} \Box(A \to B) \lor \Box(B \to A).$

・ロト ・四ト ・ヨト ・ヨト

æ

- $iPH := \{ iGL, parb \}$. Hence $[iGL, parb] Le \subseteq \{ iGL, parb \} = iPH$.
- Iemhoff [2003] introduced iPH and presented a proof provided by de Jongh & Visser that iPH is sound for arithmetical interpretations in HA, i.e. iPH ⊢ A implies HA ⊢ α_{HA}(A) for every α.
- Iemhoff [2003] conjectures that iPH is also complete for the arithmetical interpretations.
- $iPH_{\sigma} := \{ iGLC_a, atomb \}$.
- The same proof implies that iPH_{σ} is sound for Σ_1 -interpretations in HA.
- It is quite natural to expect that iPH_{σ} is also complete for Σ_1 -interpretations.

 $\begin{array}{c|c} & Preliminaries & Proj\\ Projectivity, Unification and admissibility (<math>\mathcal{L}_0$) Defin Preservativity and relative admissibility (\mathcal{L}_0) Axio Provability Semantics Sour iGLH: The Provability logic of HA Gree References Axio

iPH includes iGLH

Projectivity and sets of propositions Definition Axioms Soundness theorems Greatest lower bound Axiomatization iGLH(Γ, T) and iPH and some properties

イロト イポト イヨト イヨト

Lemma

 $\mathsf{iGLH} \vdash A \text{ implies } \mathsf{iPH} \vdash A.$

Proof.

By induction on the proof complexity of $\mathsf{iGLH} \vdash A$. All cases are trivial except for axiom instances of $\mathsf{H}(\mathsf{C} \downarrow \mathsf{SN}(\Box), \mathsf{iGL})$, i.e. $A = \Box B \to \Box C$ with $B \models_{\mathsf{C} \downarrow \mathsf{SN}(\Box)}^{\mathsf{iGL}} C$. Implies that $[\mathsf{iGL}, \mathsf{parb}] \mathsf{Le} \vdash B \triangleright C$ and hence $\mathsf{iPH} \vdash B \triangleright C$.
$\begin{array}{c|c} & & & & \\ Preliminaries \\ Projectivity, Unification and admissibility (<math>\mathcal{L}_0$) Definition \\ Preservativity and relative admissibility (\mathcal{L}_{\Box}) Decidability \\ Provability Semantics Presevativity semantic \\ iGLH: The Provability logic of HA Soundness and completeness \\ References \end{array}

• Iemhoff [2003] provides soundness and completeness of iPH for some class of intuitionistic modal Kripke models.

 $\mathcal{K}, w \Vdash A \rhd B \quad \text{iff} \quad \forall \, u \sqsupset w \ (\mathcal{K}, u \Vdash A \Rightarrow \mathcal{K}, u \Vdash B).$

- Iemhoff [2001a] also proved some partial completeness results corresponding to some fragments of iGLH.
- Mentioned Kripke models are infinite. This makes them difficult to work with.
- Here we provide Kripke-style semantic for provability and preservativity which enjoys finite-model property.
- The main idea is that we assign a proposition φ_w to each node w and

$$\mathcal{K}, w \Vdash \Box B \quad \text{iff} \quad \forall u \sqsupset w \ (\varphi_w \vdash B)$$

イロト イポト イヨト イヨト 二日

 $\begin{array}{l} \mbox{Preliminaries}\\ \mbox{Projectivity, Unification and admissibility } (\mathcal{L}_{\Box})\\ \mbox{Preservativity and relative admissibility } (\mathcal{L}_{\Box})\\ \mbox{Provability Semantics}\\ \mbox{iGLH: The Provability logic of HA}\\ \mbox{References} \end{array}$

An example

Definition Decidability Presevativity semantic Soundness and completeness

◆ back to e1

3

イロト 不得 トイヨト イヨト

$$\nVdash \Box(x \lor y) \to (\Box x \lor \Box y)$$

Projectivity, Unification and admissibility (L_□) Preservativity and relative admissibility (L_□) **Provability Semantics** iGLH: The Provability logic of HA References

Definition Decidability Presevativity semantic Soundness and completeness

Another example

♦ back to e2

(人間) シスヨン イヨン

$$\mathbb{k} \ \Box[\Box(x \lor y) \to (\Box x \lor \Box y)] \to \Box[\Box(x \to y) \lor \Box(y \to x)]$$

Definition Decidability Presevativity semantic Soundness and completeness

Definition

 $\mathcal{K} = (W, \preccurlyeq, \sqsubset, V, \varphi)$ is called a $(\Delta, \Gamma, \mathsf{T})$ -semantic if $\tilde{\mathcal{K}} := (W, \preccurlyeq, \sqsubset, V)$ is a transitive conversely well-founded Kripke model for the intuitionistic modal logic and

• φ is a function on \sqsubset -accessible nodes of W and $\varphi_w \in \Gamma$.

•
$$\mathcal{K}, w \Vdash \varphi_w$$
.

Given a set of modal propositions Y, define

$$Y_w := \{ E \in Y : \mathcal{K}, w \Vdash E \}.$$

Whenever $\Gamma = \Delta$ we simply say that \mathcal{K} is a (Γ, T) -semantic. In this case it doesn't matter how $\varphi_w \in \Gamma$ are defined.

Definition Decidability Presevativity semantic Soundness and completeness

• General Completeness

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

If $A \in \Delta$ -NF and \mathcal{K} is $(\Delta, \Gamma, \mathsf{T})$ -semantic then

 $\tilde{\mathcal{K}}, w \Vdash A \text{ iff } \mathcal{K}, w \Vdash A.$

Proof.

Straightforward induction on the complexity of A.

Definition **Decidability** Presevativity semantic Soundness and completeness

Theorem

Forcing relationship for finite $(\Delta, \Gamma, \mathsf{T})$ -semantic is decidable whenever (Δ, T) is recursively downward compact and T is sound.

Proof.

Let $\mathcal{K} = (W, \preccurlyeq, \sqsubset, V, \varphi)$ be a $(\Delta, \Gamma, \mathsf{T})$ -semantic. We show decidability of $\mathcal{K}, w \Vdash A$ by double induction on W ordered by \Box and complexity of A.

• $A = \Box B$. It is enough to decide $\Delta_u \vdash_{\tau} \varphi_u \to B$ for every $u \sqsupset w$. Since (Δ, T) is recursively downward compact, one may effectively compute $\lfloor \varphi_u \to B \rfloor_{\Delta}^{\mathsf{T}}$. By definition of $\lfloor . \rfloor_{\Gamma}^{\mathsf{T}}$ it is enough to decide $\Delta_u \vdash_{\tau} \lfloor \varphi_u \to B \rfloor_{\Delta}^{\mathsf{T}}$ which is equivalent to $\mathcal{K}, u \Vdash \lfloor \varphi_u \to B \rfloor_{\Delta}^{\mathsf{T}}$. Then use induction hypothesis. \Box

Definition of Preservativity Semantic

We extend $\mathcal{K}, w \Vdash A$ to the language $\mathcal{L}_{\triangleright}$ as follows:

 $\mathcal{K}, w \Vdash B \triangleright C \quad \Leftrightarrow \\ \forall u \sqsupset w \; \forall E \in \Delta \; (\Delta_u, \varphi_u \vdash_{\mathsf{T}} E \to B \text{ implies } \Delta_u, \varphi_u \vdash_{\mathsf{T}} E \to C),$

Definition Decidability **Presevativity semantic** Soundness and completeness

- ロト - (母) - (日) - (日) - (日)

Relation to Preservativity

Theorem

 $\underset{\Gamma}{\overset{\scriptstyle{\vdash}}{\underset{\Gamma}}} is \ sound \ for \ (\Delta, \Gamma, \mathsf{T}) \text{-}semantics, \ i.e. \ given \ such \ preservativity \\ semantics \ \mathcal{K}, \ we \ have \ \mathcal{K} \Vdash A \triangleright B \ whenever \ A \models B.$

Proof.

Let $A \models_{\Gamma}^{\swarrow} B$ and $\mathcal{K} = (W, \preccurlyeq, \sqsubset, V, \varphi)$ be a $(\Delta, \Gamma, \mathsf{T})$ -semantics and $w \sqsubset u \in W$ and $E \in \Delta$ such that $\varphi_u, \Delta_u, E \vdash_{\mathsf{T}} A$. Hence there is a finite set $\Phi_u \subseteq \Delta_u$ such that $\Phi_u, E, \varphi_u \vdash A$. By conjunctive closure condition, we have $\bigwedge \Phi_u \land E \land \varphi_u \in \Gamma$ and thus by $A \models_{\Gamma}^{\swarrow} B$ we get $\Phi_u, E, \varphi_u \vdash_{\mathsf{T}} B$. Hence we have $\varphi_u, \Delta_u, E \vdash_{\mathsf{T}} B$.

Soundness

Definition Decidability Presevativity semantic Soundness and completeness

✓ Second reduction

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Theorem

 $\mathsf{iGLH}(\Gamma,\mathsf{T})$ is sound for $(\Delta,\Gamma,\mathsf{T})$ -semantics whenever $\mathsf{IPC} \subseteq \mathsf{T}$ and $\mathsf{SN}(\Box) \subseteq \Delta$.

- The proof is by induction on $A \in \mathcal{L}_{\Box}$ and W ordered by \Box .
- One may use \bigcirc to show soundness of $H(\Gamma, T)$.
- SN(□) ⊆ ∆ is needed for soundness of iGL and necessitation.
- The proof is straightforward.

Definition Decidability Presevativity semantic Soundness and completeness

Completeness

Theorem

 $\mathsf{iGLH}(\Gamma,\mathsf{T})$ is complete for good (Γ,T) -semantics, if (Γ,T) is sdc and $\Gamma \supseteq \mathsf{SN}(\Box)$ is closed under conjunctions and $\mathsf{T} \supseteq \mathsf{IPC}$.

Proof.

Let $\mathsf{iGLH}(\Gamma, \mathsf{T}) \nvDash A$. Then by • we also have $\mathsf{iGLH}(\Gamma, \mathsf{T}) \nvDash [\![A]\!]_{\Gamma}^{\mathsf{T}}$ and a fortiori $\mathsf{iGL} \nvDash [\![A]\!]_{\Gamma}^{\mathsf{T}}$. • implies that there is some good Kripke model $\tilde{\mathcal{K}} := (W, \preccurlyeq, \sqsubset, V)$ such that $\tilde{\mathcal{K}}, w_0 \nvDash [\![A]\!]_{\Gamma}^{\mathsf{T}}$. Define $\mathcal{K} := (W, \preccurlyeq, \sqsubset, V, \varphi)$ and choose $\varphi_w \in \Gamma$ as you want. • implies that $[\![A]\!]_{\Gamma}^{\mathsf{T}} \in \Gamma\text{-}\mathsf{NF}$ and • implies $\mathcal{K} \nvDash [\![A]\!]_{\Gamma}^{\mathsf{T}}$. Then soundness implies desired result.

Definition Decidability Presevativity semantic Soundness and completeness

Second reduction

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Corollary

 $iGLC_aH_\sigma$ is sound and complete for C_a good (SN, $iGLC_a)$ -semantics.

Corollary

 iGLH^{\Box} is sound and complete for good $(\mathsf{SN}(\Box), \mathsf{iGL})$ -semantics.

Corollary

 iGLH is sound for $(\mathsf{SN}(\Box), \mathsf{C}{\downarrow}\mathsf{SN}(\Box), \mathsf{iGL})$ -semantics.

Definition Decidability Presevativity semantic Soundness and completeness

◀ 1st-red

- Since $C \downarrow SN(\Box)$ is not closed under conjunctions we do not have completeness of iGLH for $(C \downarrow SN(\Box), iGL)$ -semantics.
- Like most useful results, the proof of following theorem is not easy!
- Its proof needs its own saturation and truth lemmas.
- See the manuscript for details.

Theorem

 $\mathsf{iGLH} \ \textit{is complete for good} \ (\mathsf{SN}(\square),\mathsf{C}{\downarrow}\mathsf{SN}(\square),\mathsf{iGL})\textit{-semantics}.$

Corollary

iGLH is decidable.

Definition Decidability Presevativity semantic Soundness and completeness

イロト イポト イヨト イヨト 二日

Back to example $\nvDash \Box(x \lor y) \to (\Box x \lor \Box y)$

- That model \bigcirc is $(SN(\Box), C\downarrow SN(\Box), iGL)$ -semantic.
- $\mathcal{K}, w \nvDash \Box y$:

Proof.

Enough to show $\mathsf{SN}(\Box)_u$, $\Box x \nvDash y$. If $\mathsf{SN}(\Box)_u \vdash \Box x \to y$, then $\mathsf{SN}(\Box)_u \vdash [\Box x \to y]_{\mathsf{SN}(\Box)}^{\mathsf{iGL}}$. As we saw earlier \bullet , $[\Box x \to y]_{\mathsf{SN}(\Box)}^{\mathsf{iGL}} = \neg \Box x$. Thus $\mathsf{SN}(\Box)_u \vdash \neg \Box x$. Hence by soundness of iGL we have $\mathcal{K}, u \Vdash \neg \Box x$, a contradiction.

• This shows that $\mathsf{iGLH} \nvDash \Box(x \lor y) \to (\Box x \lor \Box y)$.

 $\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \text{Preservativity and relative admissibility } (\mathcal{L}_0) \\ & \text{Provability Semantics} \\ & \text{iGLH: The Provability logic of HA} \\ & \text{References} \end{array}$

Second step reduction First step reduction

< ロ > < 同 > < 回 > < 回 > < □ > <

Theorem

The provability logic of HA is iGLH and hence is decidable.

Proof.

Soundness: $\mathsf{iGLH} \vdash A$ implies $\mathsf{HA} \vdash \alpha_{\mathsf{HA}}(A)$ for every α .

• implies $iGLH \subseteq iPH$. Then by soundness of $iPH \cdot D$ we have desired result.

Completeness: $\mathsf{iGLH} \nvDash A$ implies $\mathsf{HA} \nvDash \alpha_{\mathsf{HA}}(A)$ for some α . $\mathsf{iGLH} \nvDash A$ implies $\mathsf{iGLC}_{\mathsf{a}}\mathsf{H}_{\sigma} \nvDash \theta(A)$ for some propositional modal substitution θ (we will see later). Then arithmetical completeness of $\mathsf{iGLC}_{\mathsf{a}}\mathsf{H}_{\sigma}$ implies desired result. $\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \text{Preservativity and relative admissibility } (\mathcal{L}_D) \\ & \text{Provability Semantics} \\ & \text{iGLH: The Provability logic of HA} \\ & \text{References} \end{array}$

Second step reduction First step reduction

What happens without H and H_{σ}

▲ 2nd-red

э

Theorem

 $\mathsf{iGL} \nvDash A \text{ implies } \mathsf{iGLC}_{\mathsf{a}} \nvDash \beta(A) \text{ for some propositional substitution } \beta.$

Proof.

Since $\mathsf{iGL} \nvDash A$, there is some $\mathcal{K} := (W, \preccurlyeq, \sqsubset, V)$ with $\mathcal{K} \nvDash A \odot$. Define \mathcal{K}' : for every $w \in W$ add a fresh atomic p_w and let it be forced (satisfied) at w and its successor/above nodes. No other atomics are forced at w. Define $\beta(x) := \bigvee_{\mathcal{K}, w \Vdash x} Q_w$ and $Q_w := q_w \land \bigwedge_{w \sqsubset u} \neg q_u$. Claim. $\mathcal{K}, w \Vdash A$ iff $\mathcal{K}', w \Vdash \beta(A)$. $\begin{array}{c} \mbox{Preliminaries} \\ \mbox{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \mbox{Preservativity and relative admissibility } (\mathcal{L}_{\square}) \\ \mbox{Provability Semantics} \\ \mbox{iGLH: The Provability logic of HA} \\ \mbox{References} \end{array}$

Second step reduction First step reduction

• • = • • = •

$\mathsf{iGLH} \nvDash A \text{ implies } \mathsf{iGLC}_{\mathsf{a}}\mathsf{H}_{\sigma} \nvDash \theta(A)$

The proof is broken in two steps:

- iGLH $\nvDash A$ implies iGLH^{\Box} $\nvDash \gamma(A)$ for some γ .
- $@ \mathsf{iGLH}^{\Box} \nvDash A \text{ implies } \mathsf{iGLC}_{\mathsf{a}}\mathsf{H}_{\sigma} \nvDash \beta(A) \text{ for some } \beta.$

Both are proved via provability semantics.

 $\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \text{Preservativity and relative admissibility } (\mathcal{L}_0) \\ \text{Provability Semantics} \\ & \text{iGLH: The Provability logic of HA} \\ & \text{References} \end{array}$

Second step reduction First step reduction

A (10) × (10) × (10)

$\mathsf{iGLH}^{\Box} \nvDash A \text{ implies } \mathsf{iGLC}_{\mathsf{a}}\mathsf{H}_{\sigma} \nvDash \beta(A)$

Sketch of the proof.

- Since iGLH[□] ⊭ A, by completeness for (SN(□), iGL)-semantics , K ⊮ A for some K = (W, ≤, □, V, ⊤).
- On the other hand, $iGLC_aH_\sigma$ is sound for CP_a (SN(\Box), SN, $iGLC_a$)-semantics. •
- \bullet One must transform ${\mathcal K}$ to a $({\mathsf{SN}}(\square),{\mathsf{SN}},{\mathsf{iGLC}}_a){\operatorname{-semantic}}.$
- The transformation is a uniform collection of transformations for iGL and iGLC_a .
- See the manuscript for details.

Second step reduction First step reduction

(人間) シスヨン イヨン

$\mathsf{iGLH} \nvDash A \text{ implies } \mathsf{iGLH}^{\Box} \nvDash \gamma(A)$

- The first step reduction is not as elementary as the second one.
- It uses features of relative projectivity and simultaneous fixed point theorem.

 $\begin{array}{c} & \mbox{Preliminaries}\\ \mbox{Projectivity, Unification and admissibility} (\mathcal{L}_0)\\ \mbox{Preservativity and relative admissibility} (\mathcal{L}_1)\\ \mbox{Provability Semantics}\\ \mbox{iGLH: The Provability logic of HA}\\ \mbox{References}\\ \end{array}$

Second step reduction First step reduction

イロト イヨト イヨト

$\mathsf{iGLH} \nvDash A \text{ implies } \mathsf{iGLH}^{\Box} \nvDash \gamma(A)$

Sketch of the proof.

- $\mathsf{iGLH} \nvDash A$ implies $\mathcal{K} \nvDash A$ for some good ($\mathsf{SN}(\Box), \mathsf{C} \downarrow \mathsf{SN}(\Box), \mathsf{iGL}$)-semantic $\mathcal{K} = (W, \preccurlyeq, \sqsubset, V, \varphi)$.
- Since $\varphi_w \in \mathsf{C} \downarrow \mathsf{SN}(\Box)$ there is an $(\mathsf{SN}(\Box), \mathsf{iGL})$ -projective substitution θ_w such that $\hat{\theta}_w(\varphi_w) \in \mathsf{SN}(\Box)$.
- The main idea is that one-bye-one we must kill φ_w 's and send them in to the set $\mathsf{SN}(\Box)$.
- Good news: when some φ_w goes in to $\mathsf{SN}(\Box)$ it remains there since $\mathsf{SN}(\Box)$ is closed under substitutions.
- Bad news: These $\hat{\theta}_w$'s are not even substitutions.
- Solution: simultaneous fixed point theorem in iGL \bigcirc .

 $\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \text{Preservativity and relative admissibility } (\mathcal{L}_0) \\ \text{Provability Semantics} \\ \text{iGLH: The Provability logic of HA} \\ \text{References} \end{array}$

Second step reduction First step reduction

• • = • • = •

Thanks For Your Attention

92/92 Mojtaba Mojtahedi (University of Tehran) Logic Online seminar (30 May/2 June 2022)

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Projectivity, Unification and admissibility } (\mathcal{L}_0)\\ \mbox{Preservativity and relative admissibility } (\mathcal{L}_{\Box})\\ \mbox{Provability Semantics}\\ \mbox{iGLH: The Provability logic of HA}\\ \mbox{References} \end{array}$

Ardeshir, M. and Mojtahedi, M. (2018). The Σ_1 -Provability Logic of HA. Annals of Pure and Applied Logic, 169(10):997–1043.

- Friedman, H. (1975). The disjunction property implies the numerical existence property. Proc. Nat. Acad. Sci. U.S.A., 72(8):2877–2878.
- Ghilardi, S. (1999). Unification in Intuitionistic Logic. Journal of Symbolic Logic, 64(2):859–880.

Gödel, K. (1933). Eine interpretation des intuitionistischen aussagenkalkuls. Ergebnisse eines mathematischen Kolloquiums, 4:39–40. English translation in: S. Feferman etal., editors, Kurt Gödel Collected Works, Vol. 1, pages 301-303. Oxford University Press, 1995.

Harrop, R. (1960). Concerning formulas of the types = A = Oq(92/92 Mojtaba Mojtahedi (University of Tehran) Logic Online seminar (30 May/2 June 2022) $\begin{array}{c} & \text{Preliminaries} \\ \text{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \text{Preservativity and relative admissibility } (\mathcal{L}_1) \\ \text{Provability Semantics} \\ \text{iGLH: The Provability logic of HA} \\ & \text{References} \end{array}$

 $A \to B \lor C, A \to (Ex)B(x)$ in intuitionistic formal systems. Journal of Symbolic Logic.

- Iemhoff, R. (2001a). A modal analysis of some principles of the provability logic of Heyting arithmetic. In Advances in modal logic, Vol. 2 (Uppsala, 1998), volume 119 of CSLI Lecture Notes, pages 301–336. CSLI Publ., Stanford, CA.
- Iemhoff, R. (2001b). On the Admissible Rules of Intuitionistic Propositional Logic. *The Journal of Symbolic Logic*, 66(1):281–294.
- Iemhoff, R. (2003). Preservativity Logic. (An analogue of interpretability logic for constructive theories). *Mathematical Logic Quarterly*, 49(3):1–21.
- Iemhoff, R., De Jongh, D., and Zhou, C. (2005). Properties of intuitionistic provability and preservativity logics. *Logic Journal of the IGPL*, 13(6):615–636.

 $\begin{array}{l} & \operatorname{Preliminaries} \\ \operatorname{Projectivity, Unification and admissibility } (\mathcal{L}_0) \\ \operatorname{Preservativity and relative admissibility } (\mathcal{L}_D) \\ \operatorname{Provability Semantics} \\ & \operatorname{iGLH: The Provability logic of HA} \\ & \operatorname{References} \end{array}$

Leivant, D. (1975). Absoluteness in Intuitionistic Logic. PhD thesis, University of Amsterdam.

- Mojtahedi, M. (2021). Hard provability logics. In *Mathematics*, *Logic*, and their Philosophies, pages 253–312. Springer.
- Myhill, J. (1973). A note on indicator-functions. *Proceedings of the AMS*, 39:181–183.
- Rybakov, V. V. (1987). Decidability of admissibility in the modal system Grz and in intuitionistic logic. *Mathematics of* the USSR-Izvestiya, 28(3):589–608.
- Smoryński, C. (1985). Self-reference and modal logic. Universitext. Springer-Verlag, New York.
- Visser, A. (1981). Aspects of Diagonalization and Provability. PhD thesis, Utrecht University.

Visser, A. (1982). On the completeness principle: a study of 92/92 Mojtaba Mojtahedi (University of Tehran) Logic Online seminar (30 May/2 June 2022)

provability in Heyting's arithmetic and extensions. Ann. Math. Logic, 22(3):263–295.

- Visser, A. (2002). Substitutions of Σ_1^0 sentences: explorations between intuitionistic propositional logic and intuitionistic arithmetic. Ann. Pure Appl. Logic, 114(1-3):227–271. Commemorative Symposium Dedicated to Anne S. Troelstra (Noordwijkerhout, 1999).
- Visser, A., van Benthem, J., de Jongh, D., and R. de Lavalette, G. R. (1995). NNIL, a study in intuitionistic propositional logic. In *Modal logic and process algebra (Amsterdam, 1994)*, volume 53 of *CSLI Lecture Notes*, pages 289–326. CSLI Publ., Stanford, CA.
- Visser, A. and Zoethout, J. (2019). Provability logic and the completeness principle. Annals of Pure and Applied Logic, 170(6):718–753.

92/92 Mojtaba Mojtahedi (University of Tehran) Logic Online seminar (30 May/2 June 2022)