$\widehat{\text { IIIII }}$ UNIVERSITEIT GENT

Reduction of arithmetical completenesses

Mojtaba Mojtahedi (Ghent University)

$$
\text { July } 13,2023
$$

Provability Logic

- \square interpreted as provability.

Provability Logic: more precise

$\mathrm{PL}(T):=$ Provability logic of $T:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma T \vdash \sigma_{T} A\right\}$

Provability Logic: more precise

$\operatorname{PL}(T):=$ Provability logic of $T:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma T \vdash \sigma_{T} A\right\}$

- $\sigma_{T}(p):=\sigma(p)$ for atomics.
- σ_{T} commutes with boolean connectives.
- $\sigma_{T}(\square A):=\operatorname{Pr}_{T}\left(\left\ulcorner\sigma_{T} A\right\urcorner\right)$.

Solovay 1976

What is the Provability logic of PA?

Solovay 1976

What is the Provability logic of PA?

The Provability logic of PA is GL

- All theorems of classical propositional logic.
- $\mathrm{K}:=\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$.
- Löb $:=\square(\square A \rightarrow A) \rightarrow \square A$.

Implies $\square A \rightarrow \square \square A$. (Due to Dick de Jongh)

- modus ponens: $A, A \rightarrow B / B$.
- Necessitation: $A / \square A$.

Σ_{1}-provability logics

$$
\begin{gathered}
\mathrm{PL}_{\Sigma}(T):=\text { Provability logic of } \\
T:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma \in \Sigma_{1} T \vdash \sigma_{T} A\right\}
\end{gathered}
$$

Σ_{1}-provability logics

$$
\begin{gathered}
\mathrm{PL}_{\Sigma}(T):=\text { Provability logic of } \\
T:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma \in \Sigma_{1} T \vdash \sigma_{T} A\right\}
\end{gathered}
$$

- $\sigma_{T}(p):=\sigma(p) \in \Sigma_{1}$ for atomics.
- σ_{T} commutes with boolean connectives.
- $\sigma_{T}(\square A):=\operatorname{Pr}_{T}\left(\left\ulcorner\sigma_{T} A\right\urcorner\right)$.

Visser 1981

The Σ_{1}-Provability logic of PA is $\mathrm{GLC}_{\mathrm{a}}:=\mathrm{GL}+p \rightarrow \square p$

Ardeshir \& M. 2015

Ardeshir \& M. 2015

- If GL $\nvdash A$ then there is some substitution τ such that $\mathrm{GLC}_{\mathrm{a}} \nvdash \tau A$.

Ardeshir \& M. 2015

- If GL $\nvdash A$ then there is some substitution τ such that $\mathrm{GLC}_{\mathrm{a}} \nvdash \tau A$.
- (Assuming the arithmetical completeness of $\mathrm{GLC}_{\mathrm{a}}$) $\mathrm{GLC}_{\mathrm{a}} \nvdash \tau A$ implies $\mathrm{PA} \nvdash \sigma_{\mathrm{PA}} \tau A$ for some Σ_{1}-sub.

Ardeshir \& M. 2015

- If GL $\nvdash A$ then there is some substitution τ such that $\mathrm{GLC}_{\mathrm{a}} \nvdash \tau A$.
- (Assuming the arithmetical completeness of $\mathrm{GLC}_{\mathrm{a}}$) $\mathrm{GLC}_{\mathrm{a}} \nvdash \tau A$ implies $\mathrm{PA} \nvdash \sigma_{\mathrm{PA}} \tau A$ for some Σ_{1}-sub.
- $\mathrm{PA} \nvdash(\sigma \tau)_{\mathrm{PA}}(A)$.

Arithmetical completeness of $\mathrm{PL}_{\Sigma}(\mathrm{PA})$ implies the arithmetical completeness of $\mathrm{PL}(\mathrm{PA})$.

Arithmetical completeness of $\mathrm{PL}_{\Sigma}(\mathrm{PA})$ implies the arithmetical completeness of $\mathrm{PL}(\mathrm{PA})$.

Arithmetical completeness of $\mathrm{PL}(\mathrm{PA})$ propositionally reducible to the one for $\mathrm{PL}_{\Sigma}(\mathrm{PA})$.

Relative Provability Logic

$\mathrm{PL}_{\Gamma}(T, U):=\Gamma$-Provability logic of T relative in U

$$
:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma \in \Gamma, U \vdash \sigma_{T} A\right\}
$$

Relative Provability Logic

$$
\begin{aligned}
& \mathrm{PL}_{\Gamma}(T, U):= \\
&:=\{A \in \text {-Provability logic of } T \text { relative in } U \\
&\left.\mathcal{L}_{\square}: \forall \sigma \in \Gamma, U \vdash \sigma_{T} A\right\}
\end{aligned}
$$

- $\sigma_{T}(p):=\sigma(p) \in \Gamma$ for atomics.
- σ_{T} commutes with boolean connectives.
- $\sigma_{T}(\square A):=\operatorname{Pr}_{T}\left(\left\ulcorner\sigma_{T} A\right\urcorner\right)$.

Another example

Theorem (Solovay 1976)
 $\mathrm{PL}(\mathrm{PA}, \mathbb{N})=\mathrm{GLS}:=\mathrm{GL}+\square A \rightarrow A$.

Another example

Theorem (Solovay 1976)

$\mathrm{PL}(\mathrm{PA}, \mathbb{N})=\mathrm{GLS}:=\mathrm{GL}+\square A \rightarrow A$.

Theorem (M. 2021)
$\mathrm{PL}(\mathrm{PA}, \mathrm{PA})$ is reducible to $\mathrm{PL}(\mathrm{PA}, \mathbb{N})$.
Proof. Let $\mathrm{GL} \nvdash A$. Then GL $\nvdash \square A$ and hence GLS $\nvdash \square A$. Then $\mathbb{N} \not \vDash \alpha_{\mathrm{PA}}(\square A)$. Thus PA $\nvdash \alpha_{\mathrm{PA}}(A)$.

Yet another example

Theorem (M. 2022)

$\mathrm{PL}(\mathrm{HA}, \mathrm{HA})$ is decidable and is as follows:

$$
\mathrm{iGLH}:=\mathrm{iGL}+\{\square A \rightarrow \square B: A \sim B\}
$$

The proof includes just the reduction of $\mathrm{PL}(\mathrm{HA}, \mathrm{HA})$ to PL_{Σ} (HA, HA).

Theorem (M. 2018)

$\mathrm{PL}_{\Sigma}(\mathrm{HA}, \mathrm{HA})$ is decidable and is as follows:

$$
\mathrm{iGLH}_{\sigma}:=\mathrm{iGLC} \mathrm{a}_{\mathrm{a}}+\left\{\square A \rightarrow \square B: A{\underset{\Sigma}{\Sigma_{1}}} B\right\}
$$

Negative result

Theorem (F. Pakhomov)
 $\mathrm{PL}_{\Sigma}(\mathrm{PA}, \mathrm{PA})$ is not reducible to $\mathrm{PL}(\mathrm{PA}, \mathrm{PA})$.

Definition

We say that f, F propositionally reduces $\mathcal{A C}_{\Gamma^{\prime}}\left(V^{\prime} ; T^{\prime}, U^{\prime}\right)$ to $\mathcal{A C}_{\Gamma}(V ; T, U)$, with the notation $\mathcal{A C}_{\Gamma}(V ; T, U) \leq_{f, F}^{\text {Prop }} \mathcal{A C}_{\Gamma^{\prime}}\left(V^{\prime} ; T^{\prime}, U^{\prime}\right)$, if:
(1) $f: \mathcal{L}_{\square} \longrightarrow \mathcal{L}_{\square}$ and $F=\left\{F_{A}: A \in \mathcal{L}_{\square}\right\}$ is a family of functions,
(2) $V \vdash f(A)$ implies $V^{\prime} \vdash A$,
(3) F_{A} is a function on arithmetical substitutions and

$$
F_{A}: \llbracket f(A) ; T, U ; \Gamma \rrbracket \longrightarrow \llbracket A ; T^{\prime}, U^{\prime} ; \Gamma^{\prime} \rrbracket \text { and } F_{A}(\sigma) \in\left[\sigma, T^{\prime}\right] .
$$

$[\sigma, T]$ is propositional closure of σ, the smallest set X s.t.
(1) $\sigma \in[\sigma, T]$ and (2) $\alpha \in[\sigma, T]$ implies $\alpha_{\mathrm{T}} \tau \in[\sigma, T]$.

Future works

(1) Are all mentioned reductions strict?
(2) All classical provability logics (classified by ABGV).
(3) What about other arithmetical completenesses: Interpretability logic and GLP.

Thanks For Your Attention

