A translation from GLP to GL_{ω}

Mojtaba Mojtahedi (Ghent University)

June 25, 2024

Provability Logic

- \square interpreted as provability.
- Gödel 1933: Based on BHK.

Provability Logic: more precise

$\mathrm{PL}(T):=$ Provability logic of $T:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma T \vdash \sigma_{T} A\right\}$

Provability Logic: more precise

$\operatorname{PL}(T):=$ Provability logic of $T:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma T \vdash \sigma_{T} A\right\}$

- $\sigma_{T}(p):=\sigma(p)$ for atomics.
- σ_{T} commutes with boolean connectives.
- $\sigma_{T}(\square A):=\operatorname{Pr}_{T}\left(\left\ulcorner\sigma_{T} A\right\urcorner\right)$.

Solovay 1976

The Provability logic of PA is GL

- All theorems of classical propositional logic.
- $\mathrm{K}:=\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$.
- Löb $:=\square(\square A \rightarrow A) \rightarrow \square A$.

Implies $\square A \rightarrow \square \square A$. (Due to Dick de Jongh)

- modus ponens: $A, A \rightarrow B / B$.
- Necessitation: $A / \square A$.

Kripke semantics GL

GL is sound and complete for finite transitive irreflexive Kripke models.

PL(PA $\left.{ }^{n}, \mathrm{PA}\right)$

- PA^{n} is PA plus all true Π_{n}^{0}-sentences.
- PA^{n} is not recursively enumerable.
- The provability predicate of PA^{n} is a Σ_{n+1}^{0} predicate.
- PA^{n} is PA plus all true Π_{n}^{0}-sentences.
- PA^{n} is not recursively enumerable.
- The provability predicate of PA^{n} is a Σ_{n+1}^{0} predicate.

$$
\begin{gathered}
\mathrm{PL}\left(\mathrm{PA}^{n}, \mathrm{PA}\right):=\text { Provability logic of } \mathrm{PA}^{n} \text { in } \mathrm{PA} \\
\\
:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma \mathrm{PA} \vdash \sigma_{\mathrm{PA}^{n}} A\right\}
\end{gathered}
$$

- $\operatorname{PL}\left(\mathrm{PA}^{n}, \mathrm{PA}\right):=\mathrm{GL}$.

All PA ${ }^{n}$ s together

- What happens if we consider all PA^{n},s provability predicates at once?
- We extend first the propositional language.
- We add a unary modal operator $[n]$ for every $n \in \omega$. $\left(\mathcal{L}_{\omega}\right)$
- What are all arithmetically valid $A \in \mathcal{L}_{\omega}$?

$G L P:$ Japaridze 1986

The system GLP axiomatized over \mathcal{L}_{ω} :

- All axioms of classical logic.
- All axioms of GL for every $[n]$.
- Monotonicity: $[n] A \rightarrow[m] A$ for $m>n$.
- Π_{n+1}^{0}-completeness: $\neg[n] A \rightarrow[m] \neg[n] A$ for $m>n$.
- Modus ponens: $\frac{A \quad A \rightarrow B}{B}$.
- Necessitation: $\frac{A}{[n] A}$.

Theorem (Japaradize)

$\mathrm{GLP} \vdash A$ iff $\mathrm{PA} \vdash \alpha_{\omega}(A)$ for every α.

- interesting due to its applications in the study of proof-theoretic strength of theories.
- not sound and complete for any finite Kripke frames.
- sound and complete for Topological semantics.

Tow valid theorems

The following two are valid theorems of GLP for $m>n$:

- $[n] A \rightarrow[n][m] A$.
(1) $[n] A \rightarrow[m] A$

Tow valid theorems

The following two are valid theorems of GLP for $m>n$:

- $[n] A \rightarrow[n][m] A$.
(1) $[n] A \rightarrow[m] A \quad$ (2) $[n][n] A \rightarrow[n][m] A$

Tow valid theorems

The following two are valid theorems of GLP for $m>n$:

- $[n] A \rightarrow[n][m] A$.
(1) $[n] A \rightarrow[m] A$
(2) $[n][n] A \rightarrow[n][m] A$
(3) $[n] A \rightarrow[n][n] A$

Tow valid theorems

The following two are valid theorems of GLP for $m>n$:

- $[n] A \rightarrow[n][m] A$.
(1) $[n] A \rightarrow[m] A$
(2) $[n][n] A \rightarrow[n][m] A$
(3) $[n] A \rightarrow[n][n] A \quad$ (4) $[n] A \rightarrow[n][m] A$.

The following two are valid theorems of GLP for $m>n$:

- $[n] A \rightarrow[n][m] A$.
(1) $[n] A \rightarrow[m] A$
(2) $[n][n] A \rightarrow[n][m] A$
(3) $[n] A \rightarrow[n][n] A$
(4) $[n] A \rightarrow[n][m] A$.
- $[n] A \rightarrow[m][n] A$.
(1) $[n] A \rightarrow[n][n] A$

The following two are valid theorems of GLP for $m>n$:

- $[n] A \rightarrow[n][m] A$.
(1) $[n] A \rightarrow[m] A$
(2) $[n][n] A \rightarrow[n][m] A$
(3) $[n] A \rightarrow[n][n] A$
(4) $[n] A \rightarrow[n][m] A$.
- $[n] A \rightarrow[m][n] A$.
(1) $[n] A \rightarrow[n][n] A \quad(2)[n][n] A \rightarrow[m][n] A$

The following two are valid theorems of GLP for $m>n$:

- $[n] A \rightarrow[n][m] A$.
(1) $[n] A \rightarrow[m] A$
(2) $[n][n] A \rightarrow[n][m] A$
(3) $[n] A \rightarrow[n][n] A$
(4) $[n] A \rightarrow[n][m] A$.
- $[n] A \rightarrow[m][n] A$.
(1) $[n] A \rightarrow[n][n] A \quad(2)[n][n] A \rightarrow[m][n] A$
(3) $[n] A \rightarrow[m][n] A$.

J: a subsystem of GLP

$\mathrm{J}:=$ GLP with monotonicity replaced by:

- Σ_{n+1}^{0}-completeness: $[n] A \rightarrow[m][n] A$ for $m>n$.
- Weak monotonicity: $[m] A \rightarrow[m][n] A$ for $m>n$.

About J

- J is sound and complete for finite Kripke frames.

About J

- J is sound and complete for finite Kripke frames.

Theorem (Beklemishev 2011)

$\mathrm{GLP} \vdash A$ iff $\mathrm{J} \vdash M^{+}(A) \rightarrow A$.

$$
\begin{gathered}
M(A):=\bigwedge_{[n] B \in A, n<i<N}([n] B \rightarrow[n+i] B) \\
M^{+}(A):=M(A) \wedge \bigwedge_{i \leq N}[i] M(A)
\end{gathered}
$$

About J

- J is sound and complete for finite Kripke frames.

Theorem (Beklemishev 2011)

$\mathrm{GLP} \vdash A$ iff $\mathrm{J} \vdash M^{+}(A) \rightarrow A$.

$$
\begin{gathered}
M(A):=\bigwedge_{[n] B \in A, n<i<N}([n] B \rightarrow[n+i] B) \\
M^{+}(A):=M(A) \wedge \bigwedge_{i \leq N}[i] M(A)
\end{gathered}
$$

Idea of proof.

$\mathrm{J} \vdash M^{+}(A) \rightarrow A \Longrightarrow \mathrm{GLP} \vdash A$ is easy.
The other way is proved by arithmetical completeness:

$$
\mathrm{J} \nvdash M^{+}(A) \rightarrow A \Longrightarrow \operatorname{PA} \nvdash \alpha_{\omega}\left(M^{+}(A) \rightarrow A\right)
$$

GLJ: a subsystem of GLP and J

GLJ := GLP with monotonicity replaced by:

- Σ_{n+1}^{0}-completeness: $[n] A \rightarrow[m][n] A$ for $m>n$.

GLJ: motivating observation

The following two axioms hold in GLJ:

- Σ_{n+1}^{0}-completeness: $[n] A \rightarrow[m][n] A$.
- Π_{n+1}^{0}-completeness: $\neg[n] A \rightarrow[m] \neg[n] A$ for $m>n$.

Together they reduce decision for $[n]$ within $[m]$ to outside of [m].

Kripke semantic for GLJ

- GLJ is sound and complete for finite Kripke-style models.

Kripke semantic for GLJ

- GLJ is sound and complete for finite Kripke-style models.
- $\mathcal{K}=\left(W,\left\{\prec_{n}\right\}_{n \in \omega}, V\right)$.
- Every node (world) has a unique predecessor.
- Some \prec_{n}-accessible world w, validates $[n+i] A$ iff every $w \prec_{n+i} u$ validates A.
- Some \prec_{n}-accessible world w, validates $[n-i-1] A$ iff the predecessor of w validates A.

Translation: first step

Theorem (M. 2024?!)
$\mathrm{GLP} \vdash A$ iff $\mathrm{GLJ} \vdash A^{+} \rightarrow A$.
A^{+}is the conjunctions of all formulas of the following shape for every $[i] C \in A$ and $0 \leq j_{1}<j_{2}<\ldots<j_{l} \leq i<k \leq r(A)$:

$$
\left[j_{1}\right]\left[j_{2}\right] \ldots\left[j_{l}\right]([i] C \rightarrow[k] C)
$$

Translation: first step

Theorem (M. 2024?!)

$\mathrm{GLP} \vdash A$ iff $\mathrm{GLJ} \vdash A^{+} \rightarrow A$.
A^{+}is the conjunctions of all formulas of the following shape for every $[i] C \in A$ and $0 \leq j_{1}<j_{2}<\ldots<j_{l} \leq i<k \leq r(A)$:

$$
\left[j_{1}\right]\left[j_{2}\right] \ldots\left[j_{l}\right]([i] C \rightarrow[k] C)
$$

Idea of proof.

$\mathrm{GLJ} \vdash A^{+} \rightarrow A \Longrightarrow \mathrm{GLP} \vdash A$ is easy.
The other way is proved by arithmetical completeness:

$$
\mathrm{GLJ} \nvdash A^{+} \rightarrow A \Longrightarrow \operatorname{PA} \nvdash \alpha_{\omega}\left(A^{+} \rightarrow A\right) .
$$

About GLJ

GLJ is well-behaving and looks natural.

Theorem (M.)

GLJ is sound and complete for poly-interpretations.

- A poly-interpretation is a substitution α together with a sequence $\left\{T_{n}\right\}_{n \in \omega}$ of theories which are Π_{n}^{0}-complete and Σ_{n+1}^{0}-axiomatizable.

Translation: the second step

- We define a translation (. $)^{\mathfrak{j}}$ from GLJ to GL_{ω}.
- The idea of translation (. $)^{\mathfrak{j}}$ is simple: It just pulls out every non-increasing nested boxes.
- Example: $([2]([1] p \rightarrow q))^{j}:=[1] p \rightarrow[2] q$.
- Nevertheless, a precise general definition needs to take care of many details.

Second step translation: precise definition

$$
\begin{gathered}
X^{n}([m] B):= \begin{cases}\top & :[m] B \in X \text { and } m<n, \\
\perp & :[m] B \notin X \text { and } m<n, \\
{[m] X^{n}(B)} & : m \geq n .\end{cases} \\
X_{n}:=\{[m] B \in X: m<n\} . \\
Y:=\left\{B \in \mathcal{L}_{\omega}: B \leq A\right\} \\
([n] E)^{j}:=\bigvee_{X \subseteq_{e} Y}\left([n] X^{n}\left(E^{\mathrm{j}}\right) \wedge \bigwedge X_{n} \wedge \neg \bigvee(Y \backslash X)_{n}\right) .
\end{gathered}
$$

Define $B \leq A$ as the minimum relation satisfying:

- \leq is transitive.
- $B \in \operatorname{sub}(A)$ implies $B \leq A$.
- $\ldots \leq A$ is closed under Boolean operators: $\perp \leq A$ and if $B, C \leq A$ then $\neg B, B \vee C, B \rightarrow C, B \wedge C \leq A$.
- $B \leq A$ implies $[n] B \leq[n] A$.

Second step translation

Theorem (M.)

$\mathrm{GLJ} \vdash A$ iff $\mathrm{GL}_{\omega} \vdash A^{\mathrm{j}}$.

Idea of proof.
We show by Kripke semantical argument that GLJ $\vdash A$ iff $\mathrm{GL}_{\omega} \vdash A$ for every monotone A.

Second step translation

Theorem (M.)

$\mathrm{GLJ} \vdash A$ iff $\mathrm{GL}_{\omega} \vdash A^{\mathrm{j}}$.

Idea of proof.

We show by Kripke semantical argument that GLJ $\vdash A$ iff $\mathrm{GL}_{\omega} \vdash A$ for every monotone A.

Let $A^{*}:=\left(A^{+} \rightarrow A\right)^{j}$. Then we have:
Corollary
$\mathrm{GLP} \vdash A$ iff $\mathrm{GL}_{\omega} \vdash A^{*}$.

- The variable-free fragment of a subsystem of GLP, called reflection calculus is important due to its applications in proof theory. What is the corresponding subsystem of GLJ?
- The intuitionistic version of poly-modal provability. We know (in a joint work with F. Pakhomov) that HA^{n}, extension of HA by all true Π_{n}^{0}-sentences, has the same provability logic as HA.
- Recently (2024), Beklemishev showed that GLP has nullary unification type. What is the unification type of GLJ? Projective formulas? Admissible rules?

Thanks For Your Attention

