$\widehat{\text { IIIIII }}$
 UNIVERSITEIT GENT

On the provability logic of Heyting Arithmetic

Mojtaba Mojtahedi (Ghent University)

June 9, 2023

Provability Logic

- \square interpreted as provability.
- Gödel 1933: Based on BHK.

Provability Logic: more precise

$\mathrm{PL}(T):=$ Provability logic of $T:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma T \vdash \sigma_{T} A\right\}$

Provability Logic: more precise

$\mathrm{PL}(T):=$ Provability logic of $T:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma T \vdash \sigma_{T} A\right\}$

- $\sigma_{T}(p):=\sigma(p)$ for atomics.
- σ_{T} commutes with boolean connectives.
- $\sigma_{T}(\square A):=\operatorname{Pr}_{T}\left(\left\ulcorner\sigma_{T} A\right\urcorner\right)$.

Solovay 1976

What is the Provability logic of PA?

Solovay 1976

What is the Provability logic of PA?

The Provability logic of PA is GL

- All theorems of classical propositional logic.
- $\mathrm{K}:=\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$.
- Löb $:=\square(\square A \rightarrow A) \rightarrow \square A$.

Implies $\square A \rightarrow \square \square A$. (Due to Dick de Jongh)

- modus ponens: $A, A \rightarrow B / B$.
- Necessitation: $A / \square A$.

Kripke semantics GL

GL is sound and complete for finite transitive irreflexive Kripke models.

Provability logic of HA

Provability logic of HA

- A. Visser 1980 first considered this problem.
- Since then many partial related results where obtained.
- Main source for difficulty: admissible rules (HA-verifiable).

$$
\frac{\neg A \rightarrow(B \vee C)}{(\neg A \rightarrow B) \vee(\neg A \rightarrow C)}
$$

Admissible rules

- $A \stackrel{\sim}{\tau} B$ iff $\forall \alpha(\mathrm{T} \vdash \alpha(A) \Rightarrow \mathrm{T} \vdash \alpha(B))$.

- In the provability logic of HA, the above rule reflected as:

$$
\square(\neg A \rightarrow(B \vee C)) \rightarrow \square((\neg A \rightarrow B) \vee(\neg A \rightarrow C)) .
$$

- Why not classically interesting?

$$
\left.A\right|_{\mathrm{cpc}} B \quad \text { iff } \quad \mathrm{CPC} \vdash A \rightarrow B
$$

Admissible rules of IPC

- For every $A \underset{\text { rac }}{ } B$ we have $\square A \rightarrow \square B$ in $\mathrm{PL}(\mathrm{HA})$.
- What are the admissible rules of IPC? Decidable?
(H. Friedman 1975)

Admissible rules of IPC

- For every $A \underset{\text { rac }}{ } B$ we have $\square A \rightarrow \square B$ in $\mathrm{PL}(\mathrm{HA})$.
- What are the admissible rules of IPC? Decidable?
(H. Friedman 1975)

Decidability: Rybakov 1987.
Axiomatization: Visser and de Jongh (unpublished).
Completeness proof: Iemhoff 2001.

The system $\lceil T, \Delta \rrbracket$

Axioms: Define $A \xrightarrow{\Delta} E:= \begin{cases}E & : E \in \Delta \\ A \rightarrow E & : \text { otherwise }\end{cases}$

$$
\begin{gathered}
\frac{\mathrm{T} \vdash A \rightarrow B}{A \triangleright B}[\mathrm{~T}] \\
A=\bigwedge_{i=1}^{n}\left(E_{i} \rightarrow F_{i}\right) \quad B=\bigvee_{i=n+1}^{n+m}\left(E_{i}\right) \\
(A \rightarrow B) \triangleright \bigvee_{i=1}^{n+m}\left(A \xrightarrow{\Delta} E_{i}\right) \\
(\Delta)
\end{gathered}
$$

Rules:

$$
\begin{array}{lc}
\frac{A \triangleright B \quad A \triangleright C}{A \triangleright(B \wedge C)} \text { Conj } & \frac{A \triangleright B \quad B \triangleright C}{A \triangleright C} \text { Cut } \\
\frac{A \triangleright C \quad B \triangleright C}{(A \vee B) \triangleright C} \text { Disj } & \frac{A \triangleright B \quad(D \in \Delta)}{(D \rightarrow A) \triangleright(D \rightarrow B)} \operatorname{Mont}(\Delta)
\end{array}
$$

Admissible Rules of IPC

Theorem (Iemhoff 2001)
 $A \underset{\text { TrC }}{ } B$ iff $\llbracket I P C$, cons $\rrbracket \vdash A \triangleright B$.

Theorem (Visser 2002)
$A{\underset{\text { गिc }}{ } B \text { iff } \llbracket \mathrm{IPC}, \text { cons } \rrbracket \vdash A \triangleright B \text { iff } \square A \rightarrow \square B \in \mathrm{PL}(\mathrm{HA}) . ~}_{\text {. }}$

What else in PL(HA)?
 ? (Disjunction property)

- DP means that if a disjunction is derivable, then either of them are derivable.
- IPC, IQC and HA has DP.
- CPC $\vdash p \vee \neg p$ while CPC $\nvdash p$ and CPC $\nvdash \neg p$.
- $\square(A \vee B) \rightarrow(\square A \vee \square B) \in \mathrm{PL}(\mathrm{HA})$?
- H. Friedman 1975: No!
- D. Leivant 1975: $\square(A \vee B) \rightarrow \square(\square A \vee \square B) \in \mathrm{PL}(\mathrm{HA})$.

What else in PL(HA)? (Markov Rule)

$\forall S \in \Sigma_{1}($ HA $\vdash \neg \neg S$ implies $\mathrm{HA} \vdash S)$.

What else in PL(HA)? (Markov Rule)

$$
\forall S \in \Sigma_{1} \quad(\mathrm{HA} \vdash \neg \neg S \quad \text { implies } \quad \mathrm{HA} \vdash S)
$$

Theorem (Visser 1981)

$$
\square \neg \neg \square A \rightarrow \square \square A \in \mathrm{PL}(\mathrm{HA}) .
$$

Theorem (Visser 1981)

The letterless fragment of $\mathrm{PL}(\mathrm{HA})$ is decidable.

PL(HA): the axiomatization

Let us define the Leivant's axiom schema as follows: (Le): $A \triangleright \square A$ for every A and B.

Theorem (M. 2022)
$\mathrm{iGLH}:=\mathrm{iGL}+\{\square A \rightarrow \square B: \llbracket \mathrm{iGL}, \square \rrbracket \mathrm{Le} \vdash A \triangleright B\}=\mathrm{PL}(\mathrm{HA})$.

PL(HA): the axiomatization

Let us define the Leivant's axiom schema as follows:

$$
\text { (Le): } A \triangleright \square A \text { for every } A \text { and } B .
$$

Theorem (M. 2022)
$\mathrm{iGLH}:=\mathrm{iGL}+\{\square A \rightarrow \square B: \llbracket \mathrm{iGL}, \square \rrbracket \mathrm{Le} \vdash A \triangleright B\}=\mathrm{PL}(\mathrm{HA})$.

Theorem (Ardeshir \& M. 2018)

$\mathrm{iGLC}_{\mathrm{a}} \mathrm{H}_{\sigma}:=\mathrm{iGLC} \mathrm{C}_{\mathrm{a}}+\left\{\square A \rightarrow \square B: \llbracket \mathrm{iGLC}_{\mathrm{a}}\right.$, atomb $\left.\rrbracket \mathrm{Le} \vdash A \triangleright B\right\}=$ $\mathrm{PL}_{\Sigma}(\mathrm{HA})$

Arithmetical soundness

The arithmetical soundness of this system in a more general setting, namely Σ_{1}-preservativity, was already known to Visser, de Jongh and Iemhoff (2001).

Completeness: Previous major contributions

(1) The NNIL-propositions and NNIL-algorithm. (Visser)
(2) Visser rules and its soundness for arithmetical interpretations. (Visser)
(3) Unification type of intuitionistic logic. (Ghilardi)
(1) Admissible Rules of Intuitionistic Logic. (Iemhoff)
(6) The Σ_{1}-provability logic of HA. (Ardeshir \& M.)

Arithmetical Completeness of iGLH

Two new tools introduced:
(1) Mixed semantics.
(2) Relativised unification and admissibility.

Mixed Semantics

For the classical provability:

$$
w \Vdash \square A \quad \text { iff } \quad \forall u \geq w(u \Vdash A) .
$$

Mixed Semantics

For the classical provability:

$$
w \Vdash \square A \quad \text { iff } \quad \forall u \geq w(u \Vdash A) .
$$

Since intuitionistic provability requires more witnesses than classical, here in the semantics we need to strengthen:

$$
w \Vdash \square A \quad \text { iff } \quad \forall u \geq w\left(\Gamma_{u} \vdash A\right) .
$$

$\Gamma_{u}:=$ a fragment of valid propositions at the node u.

Γ-fication: a generalization for unification

- Unification problem:

Given A find all subs θ such that $\vdash \theta(A)$.

- Γ-fication:

Given A find all subs θ such that $\vdash \theta(A) \leftrightarrow B$ for some $B \in \Gamma$.

Projectivity

Silvio Ghilardi showed that projectivity is essential for unification problem.

Projectivity: standard (Ghilardi) definition

A is projective iff there is some θ s.t. IPC $\vdash \theta(A)$ and $A \vdash_{\text {IPC }} \theta(x) \leftrightarrow x$ for every variable x.

Theorem

A projective unifier is a most general unifier.

Proof.

Consider some α s.t. IPC $\vdash \alpha(A)$. Then $\alpha(A) \vdash \alpha \theta(x) \leftrightarrow \alpha(x)$. This means that $\alpha \theta=\theta$, hence θ is more general than α.

Projectivity: standard (Ghilardi) definition

A is projective iff there is some θ s.t. IPC $\vdash \theta(A)$ and $A \vdash_{\text {IPC }} \theta(x) \leftrightarrow x$ for every variable x.

Theorem

A projective unifier is a most general unifier.

Proof.

Consider some α s.t. IPC $\vdash \alpha(A)$. Then $\alpha(A) \vdash \alpha \theta(x) \leftrightarrow \alpha(x)$. This means that $\alpha \theta=\theta$, hence θ is more general than α.

Theorem (Ghilardi 1999)

For every A there is a finite set of projective propositions $\Pi(A)$ such that $\mathrm{IPC} \vdash \bigvee \Pi(A) \rightarrow A$ and $A{\underset{\text { rec }}{ } \bigvee \Pi(A) . ~}_{\text {. }}$

NNIL(par)-projectivity

A is NNIL(par)-projective if there is some θ and $B \in \mathrm{NNIL}($ par $)$ s.t. IPC $\vdash \theta(A) \leftrightarrow B$ and $A \vdash_{\mathrm{IPC}} \theta(x) \leftrightarrow x$ for every var x.

Theorem (M. 2022)

For every A there is a finite set of NNIL(par)-projective propositions $\bigvee \Pi(A)$ such that IPC $\vdash \bigvee \Pi(A) \rightarrow A$ and

Theorem (M. 2022)

$A \stackrel{\text { गिc }}{\text { par }}_{\stackrel{\text { par }}{ }} B$ iff $\llbracket \mathrm{IPC}, \mathrm{par} \rrbracket \vdash A \triangleright B$.

- Provability logic of HA relative in other systems.
- Provability logic of extensions of HA by Markov Principle or/and Extended Church Thesis. Specifically:
Propositional Logic of HA + MP + ECT, and closed fragment of provability logic of HA + ECT.
- Provability logic of subsystems of HA. (Visser \& Miranda)
- Classification of all intuitionistic provability logics? (The intuitionistic version of BAJV theorem)
- Preservativity logic of Heyting Arithmetic. (Iemhoff's Conjecture)
- Study of relative unification and admissibility for other logics and sets other than NNIL.
- Mixed semantics for other intuitionistic modal systems.
- Development of Visser's variant of mixed semantics.

Mojtahedy@gmail.com

http://mmojtahedi.ir/

Thanks For Your Attention

