

Provability Interpretations for intuitionistic modal logic

Mojtaba Mojtahedi (Ghent University)

October 17, 2023

1/27 Mojtaba Mojtahedi (Ghent University) UGent (CLPS, 10 May 2023

Theorem

Every strong enough theory is incomplete, i.e. there is some true unprovable sentence. The true unprovable sentence may be taken as "The consistency of the same theory".

Theorem

Every strong enough theory is incomplete, i.e. there is some true unprovable sentence. The true unprovable sentence may be taken as "The consistency of the same theory".

- Theory:
 - Consistent and first-order.
 - Finite set of axiom schemes, or decidable axiom set.
- Strong enough: It must include basic number theory.

Main Feature of Gödel's Incompleteness Theorems

Arithmetization of Syntax.

- ∢ ∃ →

Arithmetization of Syntax.

Speaking about provability in T within the same theory T.

• Modal logic, maybe is as old as the logic itself.

- Modal logic, maybe is as old as the logic itself.
- Language: Unary operators \Box and \Diamond .

• • = • • = •

- Modal logic, maybe is as old as the logic itself.
- Language: Unary operators \Box and \Diamond .
- Intuitive interpretations: various. Knowledge, Temporal, Obligation, Belief, Program verification and more.

- Modal logic, maybe is as old as the logic itself.
- Language: Unary operators \Box and \Diamond .
- Intuitive interpretations: various. Knowledge, Temporal, Obligation, Belief, Program verification and more.
- Main challenge: What is the set of valid propositions in a fixed paradigm?

- Modal logic, maybe is as old as the logic itself.
- Language: Unary operators \Box and \Diamond .
- Intuitive interpretations: various. Knowledge, Temporal, Obligation, Belief, Program verification and more.
- Main challenge: What is the set of valid propositions in a fixed paradigm?
- Endless objections without conclusion, mainly due to imperciseness in the interpretation.

- \Box as provability.
- Gödel 1933: Based on BHK, he introduces a translation from Intuitionistic Logic to S4.

From a philosophical point of view, provability logic is interesting because:

- The concept of provability in a fixed theory of arithmetic has a unique and non-problematic meaning, other than concepts like necessity and knowledge studied in modal and epistemic logic. Quine was a proponent of syntactical approach to the modal logic.
- Provability logic provides tools to study the notion of self-reference.

$\mathsf{PL}(T) := \text{Provability logic of } T := \{A \in \mathcal{L}_{\Box} : \forall \sigma \ T \vdash \sigma_{_{T}}A\}$

.

 $\mathsf{PL}(T) := \text{Provability logic of } T := \{A \in \mathcal{L}_{\Box} : \forall \sigma \ T \vdash \sigma_{_{T}}A\}$

- $\sigma_{\scriptscriptstyle T}(p) := \sigma(p)$ for atomics.
- σ_{τ} commutes with boolean connectives.

$$\bullet \ \sigma_{\scriptscriptstyle T}(\Box A):={\rm Pr}_{\scriptscriptstyle T}(\ulcorner\sigma_{\scriptscriptstyle T} A\urcorner).$$

$\neg\Box\bot\not\in\mathsf{PL}(\mathrm{Classical\ Math.})$

- ∢ ∃ →

$\neg\Box\bot\not\in\mathsf{PL}(\mathrm{Classical}\ \mathrm{Math.})$

$\neg\Box\bot \rightarrow \neg\Box(\neg\Box\bot)$

ト 4 注 ト 4 注 ト 1

8/27 Mojtaba Mojtahedi (Ghent University) UGent (CLPS, 10 May 2023

$\neg\Box\bot\not\in\mathsf{PL}(\mathrm{Classical}\ \mathrm{Math.})$

$\neg\Box\bot \to \neg\Box(\neg\Box\bot)$

$\Box(\neg\Box\bot)\to\Box\bot$

▲御▶ ▲理▶ ▲理▶

2

8/27 Mojtaba Mojtahedi (Ghent University) UGent (CLPS, 10 May 2023

The Provability logic of *Classical Mathematics* is GL

- All theorems of classical propositional logic.
- $\mathsf{K} := \Box(A \to B) \to (\Box A \to \Box B).$
- Löb := $\Box(\Box A \to A) \to \Box A$. Implies $\Box A \to \Box \Box A$.
- modus ponens: $A, A \rightarrow B/B$.
- Necessitation: $A / \Box A$.

GL is sound and complete for *finite transitive irreflexive* Kripke models.

• Soundness: known since 1955 by Löb.

▶ ◀ ⋽ ▶

- Soundness: known since 1955 by Löb.
- $\mathsf{GL} \nvDash A$.
- $\mathcal{K}, w \not\models A$.
- $f(n) \prec f(n+1)$ iff n+1 proves this fact that f will not remain at f(n+1).

•
$$\sigma(p) := \bigvee_{w \models p} (\lim f = w).$$

 $\bullet \ \mathsf{PA} \nvDash \sigma_{\scriptscriptstyle T}(A).$

 $\mathsf{PL}_{\Sigma}(T) := \Sigma_1 \text{-} \text{Provability logic of } T := \{ A \in \mathcal{L}_{\Box} : \forall \sigma \ T \vdash \sigma_{_T} A \}$

Theorem (Visser)

$$\mathsf{PL}_{\Sigma}(\mathsf{PA}) = \mathsf{GLC}_{\mathsf{a}} := \mathsf{GL} + p \to \Box p \text{ for atomic } p \text{ 's.}$$

Proof.

Similar to the original proof, except for

•
$$\sigma(p) := \bigvee_{w \models p} (\exists x f(x) = w).$$

Theorem (Ardeshir & M. 2015)

One may reduce the arithmetical completeness of GL to the one for $\mathsf{GLCa}.$

Proof.

Let $\mathsf{GL} \nvDash A$. Then find a Kripke counter model of A. Then transform it to a Kripke model of $\mathsf{GLC}_{\mathsf{a}}$ which refutes $\alpha(A)$ for some propositional substitution α . Thus $\mathsf{GLC}_{\mathsf{a}} \nvDash \alpha(A)$. Finally use arithmetical completeness of $\mathsf{GLC}_{\mathsf{a}}$ and obtain σ such that $\mathsf{PA} \nvDash \sigma \alpha(A)$.

Generalizations

• Relative provability logics: PL(T, S). Artemov, Visser, Beklemishev and Gaparidze. (1980-1989)

- Relative provability logics: PL(T, S). Artemov, Visser, Beklemishev and Gaparidze. (1980-1989)
- Poly-modal Provability Logic.
 Gaparidze, Beklemishev, Pakhomov, Bezhanishvili, Icard, Gabelaia and ... (1986-)
- Interpretability logic. A ▷ B
 Visser, Berarducci, de Jongh, Veltman, Shavrukov and
 ... (1980-1990)
- Provability logic of weak systems of arithmetic (bounded arithmetic).

- Relative provability logics: PL(T, S). Artemov, Visser, Beklemishev and Gaparidze. (1980-1989)
- Poly-modal Provability Logic.
 Gaparidze, Beklemishev, Pakhomov, Bezhanishvili, Icard, Gabelaia and ... (1986-)
- Interpretability logic. A ▷ B
 Visser, Berarducci, de Jongh, Veltman, Shavrukov and
 ... (1980-1990)
- Provability logic of weak systems of arithmetic (bounded arithmetic).
- Provability logic of Heyting Arithmetic HA.

- A. Visser 1980 first considered this.
- Since then many partial related results were obtained. We review them later.
- Main source for difficulty: admissible rules.

$$\frac{\neg A \to (B \lor C)}{(\neg A \to B) \lor (\neg A \to C)}$$

- $A \vdash_{\tau} B$ iff $\forall \alpha \ (\mathsf{T} \vdash \alpha(A) \Rightarrow \mathsf{T} \vdash \alpha(B)).$
- Example: $\neg A \rightarrow (B \lor C) \models_{_{\mathsf{IPC}}} (\neg A \rightarrow B) \lor (\neg A \rightarrow C).$
- In the provability logic of HA, the above rule reflected as:

$$\Box(\neg A \to (B \lor C)) \to \Box((\neg A \to B) \lor (\neg A \to C)).$$

• Why not classically interesting?

 $A \vdash_{\operatorname{cpc}} B$ iff $\operatorname{CPC} \vdash A \to B$.

- For every $A \vdash_{\mathsf{PC}} B$ we have $\Box A \to \Box B$ in $\mathsf{PL}(\mathsf{HA})$.
- What are the admissible rules of IPC? Decidable? (H. Friedman 1975)

• • = • • = •

- For every $A \vdash_{\mathsf{PC}} B$ we have $\Box A \to \Box B$ in $\mathsf{PL}(\mathsf{HA})$.
- What are the admissible rules of IPC? Decidable? (H. Friedman 1975) Decidability: Rybakov 1997. Axiomatization: Visser and de Jongh (??). Completeness proof: Iemhoff 2001.

The system $\llbracket \mathsf{T}, \Delta \rrbracket$

Axioms: Define
$$\{A\}_{\Delta}(E) := \begin{cases} E & : E \in \Delta \\ A \to E & : \text{ otherwise} \end{cases}$$

$$\frac{\mathsf{T} \vdash A \to B}{A \triangleright B} [\mathsf{T}]$$

$$\frac{A = \bigvee_{i=1}^{n} (E_i \to F_i) \qquad B = \bigvee_{i=n+1}^{n+m} (F_i)}{(A \to B) \rhd \bigvee_{i=1}^{n+m} \{A\}_{\Delta}(E_i)} \lor(\Delta)$$

Rules:

$$\frac{A \rhd B \qquad A \rhd C}{A \rhd (B \land C)} \operatorname{Conj} \qquad \frac{A \rhd B \qquad B \rhd C}{A \rhd C} \operatorname{Cut}$$

$$\frac{A \rhd C \qquad B \rhd C}{(A \lor B) \rhd C} \operatorname{Disj} \qquad \frac{A \rhd B \qquad (D \in \Delta)}{(D \to A) \rhd (D \to B)} \operatorname{Mont}(\Delta)$$

크

Theorem (Iemhoff 2001)

 $A \vdash_{\scriptscriptstyle \mathsf{PC}} B \; \mathit{i\!f\!f}\; [\![\mathsf{IPC}, \mathsf{cons}]\!] \vdash A \rhd B.$

Theorem (Visser 2002)

$A \vdash_{_{\mathsf{IPC}}} B \ \textit{iff} \ \llbracket \mathsf{IPC}, \{\top, \bot\} \rrbracket \vdash A \rhd B \ \textit{iff} \ \Box A \to \Box B \in \mathsf{PL}(\mathsf{HA}).$

▲御▶ ▲理▶ ▲理▶

2

What else in PL(HA)? (Disjunction property)

- DP means that if a disjunction is derivable, then either of them are derivable.
- IPC, IQC and HA has DP.
- $\mathsf{CPC} \vdash p \lor \neg p$ while $\mathsf{CPC} \nvDash p$ and $\mathsf{CPC} \nvDash \neg p$.
- $\Box(A \lor B) \to (\Box A \lor \Box B) \in \mathsf{PL}(\mathsf{HA})$?
- H. Friedman 1975: No!
- D. Leivant 1975: $\Box(A \lor B) \to \Box(\Box A \lor \Box B) \in \mathsf{PL}(\mathsf{HA}).$
- Above axiom together with reflection implies DP.

What else in PL(HA)? (Markov Rule)

$\forall S \in \Sigma_1 (\mathsf{HA} \vdash \neg \neg S \text{ implies } \mathsf{HA} \vdash S).$

ト ・ 同 ト ・ 臣 ト ・ 臣 ト …

2

21/27 Mojtaba Mojtahedi (Ghent University) UGent (CLPS, 10 May 2023

What else in PL(HA)? (Markov Rule)

$\forall S \in \Sigma_1 (\mathsf{HA} \vdash \neg \neg S \text{ implies } \mathsf{HA} \vdash S).$

Theorem (Visser 1981)

 $\Box \neg \neg \Box A \to \Box \Box A \in \mathsf{PL}(\mathsf{HA}).$

▲掃▶ ▲ 国▶ ▲ 国▶

Theorem (Visser 1981)

The letterless fragment of PL(HA) is decidable.

Let us define the Leivant's axiom schema as follows:

(Le): $A \rhd \Box A$ for every A and B.

Theorem (M. 2022)

 $\mathsf{iGLH} := \mathsf{iGL} + \{\Box A \to \Box B : \llbracket \mathsf{iGL}, \Box \rrbracket \mathsf{Le} \vdash A \rhd B\} = \mathsf{PL}(\mathsf{HA}).$

Let us define the Leivant's axiom schema as follows:

(Le): $A \rhd \Box A$ for every A and B.

Theorem (M. 2022)

 $\mathsf{iGLH} := \mathsf{iGL} + \{\Box A \to \Box B : \llbracket \mathsf{iGL}, \Box \rrbracket \mathsf{Le} \vdash A \rhd B\} = \mathsf{PL}(\mathsf{HA}).$

Theorem (Ardeshir & M. 2018)

$$\begin{split} \mathsf{i}\mathsf{GLC}_\mathsf{a}\mathsf{H}_\sigma := \mathsf{i}\mathsf{GLC}_\mathsf{a} + \{\Box A \to \Box B : \llbracket \mathsf{i}\mathsf{GLC}_\mathsf{a}, \mathsf{atomb} \rrbracket \mathsf{Le} \vdash A \rhd B\} = \mathsf{PL}_\Sigma(\mathsf{HA}) \end{split}$$

The arithmetical soundness of this system in a more general setting, namely Σ_1 -preservativity, was already known by Visser, de Jongh and Iemhoff (2001).

- Let $\mathsf{iGLH} \nvDash A$.
- ② find some α s.t. iGLC_aH_σ ⊭ α(A).
- **③** use arithmetical completeness of $\mathsf{iGLC}_{\mathsf{a}}\mathsf{H}_{\sigma}$ to find σ s.t. $\mathsf{HA} \nvDash \sigma \alpha(A)$.

- We first need a finite, or at least well-behaved Kripke semantics.
- Iemhoff already provided a semantic for an extension of iGLH in the language with binary modal operator.
- Iemhoff's semantics are not finite.
- At least we failed to use it for the purpose of reduction.
- We provided a finite *mixed* semantic which is a combination of derivability and Kripke-style validity.
- It well fits for preservativity.

• Mixed Semantics for Modal Logic.

글▶ ★ 글▶

- Mixed Semantics for Modal Logic.
- Relativising the Notions of Unification and Admissibility.

→ < ∃→

Thanks For Your Attention