

In the name of God.

Homework-2

This set of exercises is due by 19/12/96.

Q1: Verify whether the following formulas are tautologies(always true sentences) or not. If not give a counter-example:

i) $\forall x (A(x) \lor B(x))$	\longleftrightarrow	$\forall x A(x) \lor \forall x B(x)$
ii) $\exists x \left(A(x) \land B(x) \right)$	\longleftrightarrow	$\exists x A(x) \land \exists x B(x)$
iii) $\forall x (A \lor B(x))$	\longleftrightarrow	$A \vee \forall x B(x)$
iv) $\forall x (A(x) \rightarrow B)$	\longleftrightarrow	$\exists x A(x) \to B$
v) $\forall x (A \rightarrow B(x))$	\longleftrightarrow	$A \to \forall x B(x)$

Q2: If we define the limit of a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ on a point $a \in D_f$ as follows:

$$\lim_{x \to a} f(x) = L \quad \longleftrightarrow \quad \forall \varepsilon > 0 \exists \delta > 0: \ | \ x - a \mid < \delta \longrightarrow | \ f(x) - L \mid < \varepsilon$$

Determine $\neg (\lim_{x \to a} f(x) = L)$ in terms of quantifiers, ε and δ and find a function $g : \mathbb{R} \longrightarrow \mathbb{R}$ such that it satisfies $\forall a \in \mathbb{R} \neg (\lim_{x \to a} g(x) = 0)$

Q3: Prove or disprove each of the following statements:

- i) The set given by the application of the axiom of pairing on two arbitrary sets is unique.
- ii) The set given by the application of the union axiom on an arbitrary set is unique.
- iii) The set given by the application of the power-set axiom on an arbitrary set is unique.
- iv) There exists a set A which its complement $(B = \{x \mid x \notin A\})$ is a set.
- v) For every pair of sets A, B we have: $\mathbb{P}(A \cup B) = \mathbb{P}(A) \cup \mathbb{P}(B)$
- vi) For every pair of sets A, B we have: $\cap A \cap \cap B = \cap (A \cap B)$
- vii) $A = \{X : \emptyset \notin X\}$ is a set.

Q4: Prove that the weaker form of the union axiom can be derived from the stronger version and other axioms.

Q5: Prove that there is no set containing all singletons (sets with 1 element). Then prove the generalized version of this statement for all $n \in \mathbb{N}$. Namely, prove that there is no set containing all n-element sets. Hint: define each n-element set to be the disjoint union of a family of n singletons.

Q6: (*Bonus Problem*)Let A be a set-theoretical structure such that:

- i) $\emptyset \in A$
- ii) $\forall x (x \in A \rightarrow x \cup \{x\} \in A)$
- iii) $\forall B (B \subseteq A \rightarrow \cup B \in A)$

Is A a set or not? In either case prove your answer.