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Once the instructions have been selected, a second pass assigns physical
registers to symbolic ones. The goal is to find an assignment that minimizes
the cost of spills.

In the second pass, for each procedure a register-interference graph is con-
structed in which the nodes are symbolic registers and an edge connects two
nodes if one is live at a point where the other is defined. For example, a register-
interference graph for Fig. 8.17 would have nodes for names a and d. In block
B, ais live at the second statement, which defines d; therefore, in the graph
there would be an edge between the nodes for a and d.

An attempt is made to color the register-interference graph using % colors,
where k is the number of assignable registers. A graph is said to be colored if
each node has been assigned a color in such a way that no two adjacent nodes
have the same color. A color represents a register, and the color makes sure
that no two symbolic registers that can interfere with each other are assigned
the same physical register.

Although the problem of determining whether a graph is k-colorable is NP-
complete in general, the following heuristic technique can usually be used to do
the coloring quickly in practice. Suppose a node n in a graph G has fewer than
k neighbors (nodes connected to n by an edge). Remove n and its edges from
G to obtain a graph G'. A k-coloring of G' can be extended to a k-coloring of
G by assigning n a color not assigned to any of its neighbors.

By repeatedly eliminating nodes having fewer than k edges from the register-
interference graph, either we obtain the empty graph, in which case we can
produce a k-coloring for the original graph by coloring the nodes in the reverse
order in which they were removed, or we obtain a graph in which each node has
k or more adjacent nodes. In the latter case a k-coloring is no longer possible.
At this point a node is spilled by introducing code to store and reload the
register. Chaitin has devised several heuristics for choosing the node to spill.
A general rule is to avoid introducing spill code into inner loops.

S oL | Basic Block ca 25 (s,03%0) (T) .0

:Aho g\:f OYd (gamip )l c.w\:s .915.?-

O IV asa




Partition the intermediate code into basic blocks, which are maximal se-
quences of consecutive three-address instructions with the properties that

(a) The flow of control can only enter the basic block through the first
instruction in the block. That is, there are no jumps into the middle
of the block.

(b) Control will leave the block without halting or branching, except
possibly at the last instruction in the block.
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On the debit side, if z is live on entry to the loop header, we must load z
into its register just before entering loop L. This load costs two units. Similarly,
for each exit block B of loop L at which z is live on entry to some successor of
B outside of L, we must store z at a cost of two. However, on the assumption
that the loop is iterated many times, we may neglect these debits since they
occur only once each time we enter the loop. Thus, an approximate formula for
the benefit to be realized from allocating a register x within loop L is

> use(z, B) +2 xlive(z, B) (8.1)
blocks B in L

where use(x, B) is the number of times z is used in B prior to any definition of
@; live(z, B) is 1 if z is live on exit from B and is assigned a value in B, and
live(z, B) is 0 otherwise. Note that (8.1) is approximate, because not all blocks
in a loop are executed with equal frequency and also because (8.1) is based
on the assumption that a loop is iterated many times. On specific machines a
formula analogous to (8.1), but possibly quite different from it, would have to
be developed.
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