
University of Tehran, Compilers Course Mojtahedi

Written Assignment 5

Due ??

This assignment asks you to prepare written answers to questions on type checking. Each of the questions
has a short answer. You may discuss this assignment with other students and work on the problems together.
However, your write-up should be your own individual work.

1. Show the full type derivation (as done in slide 49 in the lecture notes) for the following judgement:

O[Bool/x] ⊢ x <- (let x:Object <- x in x = x): Bool

2. Suppose we extend the grammar for Cool with a “void” keyword

expr ::= void

| ...

that is analogous to null in Java. (Currently objects are initialized to void if they have no other initializer
specified, but there is no general-purpose void keyword.) We want to be able to use void whereever an
object can be used, as in

let foo:Int <- if some_test

then 5

else void

fi

in ...

Give a sound typing rule that we can add to the Cool specification to accomodate this new keyword.

3. Suppose we extend Cool with exceptions by adding two new constructs to the Cool language.

expr ::= try expr catch ID => expr

| throw expr

| ...

Here try, catch and throw are three new terminals. “throw expr” returns expr to the closest dynam-
ically enclosing catch block. Note that since throw expression returns control to a different location, we
do not really care about the context in which throw is used. For example, (throw false) + 2 is a valid
Cool expression (However, note that (throw false)+(2+ true) is not a valid Cool expression). Following
is an example that uses the try-catch and throw constructs.

Spring 2018 page 1 of 2

University of Tehran, Compilers Course Mojtahedi

try

if some_test1 then throw 34

else if some_test2 then throw ‘‘undefined error’’

else do_something fi fi

catch x =>

case x of

x:Int => do_something1

x:String => do_something2

esac

The above program fragment executes “do something1” (with x bound to the value 34) if “some test1”
evaluates to true. It executes “do something2” (with x bound to the value “undefined error”) if
“some test1” evaluates to false but “some test2” evaluates to true. It executes “do something” if both
“some test1” and “some test2” evaluate to false.

Give a set of new sound typing rules that we can add to the Cool specification to accomodate these two
new constructs.

4. The Java programming language includes arrays. The Java language specification states that if s is an
array of elements of class S, and t is an array of elements of class T , then the assignment s = t is allowed
as long as T is a subclass of S. This typing rule for array assignments turns out to be unsound. (Java
works around the fact that this rule is not statically sound by inserting runtime checks to generate an
exception if arrays are used unsafely. For this question, assume there are no special runtime checks.)

Consider the following Java program, which type checks according to the preceeding rule:

class Mammal { String name; }

class Dog extends Mammal { void beginBarking() { ... } }

class Main {

static public void main(String argv[]) {

Dog x[] = new Dog[5];

Mammal y[] = x;

/* Insert code here */

}

}

Add code to the main method so that the resulting program is a valid Java program (i.e., it type checks
statically and so it will compile), but the program could result in an operation being applied to an
inappropriate type when executed. Include a brief explanation of how your program exhibits the problem.

Spring 2018 page 2 of 2

University of Tehran, Compilers Course Mojtahedi

Solutions to Written Assignment 5

1. Show the full type derivation (as done in slide 49 in the lecture notes) for the following judgement:

O[Bool/x] ⊢ x <- (let x:Object <- x in x = x)

Solution: Let Bo stand for the type Bool and Ob stand for the type Object.

O[Bo/x](x) = Bo

O[Bo/x] ⊢ x: Bo Bo ≤ Bo

O[Bo/x] ⊢ x: Bo Bo ≤ Ob

O[Bo/x] ⊢ x: Ob Ob ≤ Ob

O[Bo/x][Ob/x](x) = Ob

O[Bo/x][Ob/x] ⊢ x: Ob

O[Bo/x][Ob/x](x) = Ob

O[Bo/x][Ob/x] ⊢ x: Ob

O[Bo/x][Ob/x] ⊢ x = x: Bo

O[Bo/x] ⊢ let x:Ob <- x in x = x: Bo

O[Bo/x] ⊢ x <- (let x:Ob <- x in x = x): Bo

2. Suppose we extend the grammar for cool with a ‘‘void’’ keyword

expr ::= void

| ...

that is analogous to null in Java. (Currently objects are initialized to void if they

have no other initializer specified, but there is no general-purpose void keyword.) We

want to be able to use void whereever an object can be used, as in

let foo:Int <- if some_test

then 5

else void

fi

in ...

Give a sound typing rule that we can add to the Cool specification to accomodate this

new keyword.

Solution:

O ⊢ void: T

You could also do this by defining a new type ‘‘Void’’:

O ⊢ void: Void

and declaring that Void ≤ T for all T. Note that your subtype graph is now a DAG, not

a tree.

3. Suppose we extend Cool with exceptions by adding two new constructs to the cool

language.

expr ::= try expr catch ID => expr

| throw expr

| ...

Here try, catch and throw are three new terminals. ‘‘throwexpr’’ returns expr to the

closest dynamically enclosing catch block. Note that since throw expression returns

control to a different location, we do not really care about the context in which throw

is used. For example, (throw false) + 2 is a valid Cool expression (However, note that

(throw false) + (2 + true) is not a valid Cool expression). Following is an example that

uses the try-catch and throw constructs. It executes ‘‘do something1’’ (with x bound

to the value 34) if ‘‘some test1’’ evaluates to true.

Spring 2018 page 1 of 3

University of Tehran, Compilers Course Mojtahedi

try

if some_test1 then throw 34

else if some_test2 then throw ‘‘undefined error’’

else do_something fi fi

catch x =>

case x of

x:Int => do_something1

x:String => do_something2

esac

It executes ‘‘do something2’’ (with x bound to the value ‘‘undefined error’’) if

‘‘some test1’’ evaluates to false but ‘‘some test2’’ evaluates to true. It executes

‘‘do something’’ if both ‘‘some test1’’ and ‘‘some test2’’ evaluate to false.

Give a set of new sound typing rules that we can add to the Cool specification to

accomodate these two new constructs.

Solution:
O ⊢ e: T1

O ⊢ throw e: T2

O ⊢ e1 : T1 O[Object/x] ⊢ e2 : T2

O ⊢ try e1 catch x => e2: T1 ⊔ T2

4. The Java programming language includes arrays. The Java language specification states

that if s is an array of elements of class S, and t is an array of elements of class

T, then the assignment s = t is allowed as long as T is a subclass of S. This typing

rule for array assignments turns out to be unsound. (Java works around the fact that

this rule is not statically sound by inserting runtime checks to generate an exception

if arrays are used unsafely. For this question, assume there are no special runtime

checks.)

Consider the following Java program, which type checks according to the preceeding

rule:

class Mammal { String name; }

class Dog extends Mammal { void beginBarking() { ... } }

class Main {

static public void main(String argv[]) {

Dog x[] = new Dog[5];

Mammal y[] = x;

/* Insert code here */

}

}

Add code to the main method so that the resulting program is a valid Java program

(i.e., it type checks statically and so it will compile), but the program could result

in an operation being applied to an inappropriate type when executed. Include a brief

explanation of how your program exhibits the problem.

Solution:

Spring 2018 page 2 of 3

University of Tehran, Compilers Course Mojtahedi

Dog x[] = new Dog[5];

Mammal y[] = x;

Mammal a_cat = new Mammal();

y[0] = a_cat; // ###

x[0].beginBarking();

The problem here is that arrays are not just lists of values -- they represent memory

locations into which we can store new data.

Normally we say that A ≤ B if objects of type A can safely be used anywhere that

objects of type B can be used. That’s not quite true with Dog[] ≤ Mammal[], since

a Mammal[] object can be safely used on the left-hand side of the assignment marked by

###, while a Dog[] object cannot. Java handles this by adding a runtime check to every

array assignment that determines whether the right-hand side of the assignment matches

the dynamic type of the array.

Spring 2018 page 3 of 3

University of Tehran, Compilers Course Mojtahedi

Written Assignment 6

Due ??

This assignment asks you to prepare written answers to questions on run-time environment and code
generation. Each of the questions has a short answer. You may discuss this assignment with other students
and work on the problems together. However, your write-up should be your own individual work.

1. Suppose f is a function with a call to g somewhere in the body of f:

f(...) {

... g(...) ...

}

We say that this particular call to g is a tail call if the call is the last thing f does before returning. For
example, consider the following functions for computing positive powers of 2:

f(x:Int, acc:Int) : Int { if x > 0 then f(x-1, acc*2) else acc fi };

g(x:Int) : Int { if x > 0 then 2*g(x-1) else 1 fi };

Here f(x, 1) = g(x) = 2x for x ≥ 0. The recursive call to f is a tail call, while the recursive call to g is
not. A function in which all recursive calls are tail calls is called tail recursive.

(a) Here is a non-tail recursive function for computing factorial:

fact(n:Int) : Int { if n > 0 then n*fact(n-1) else 1 fi };

Write a tail recursive function fact2 that computes the same result. (Hint: Your function will most
likely need two arguments, or it may need to invoke a function of two arguments.)

(b) Recall from lecture that function calls are usually implemented using a stack of activation records.
Trace through the execution of fact and fact2 both computing 4!, writing out the stack of activation
records at each step (i.e., draw the tree of activation records). (If you were unable to write a tail-
recursive version of fact, show functions f and g from above computing 24.) Indicate the amount
of computation done before, during, and after each record is created or destroyed. Is there any
place where you can see potential for making the execution of the tail-recursive fact2 more time- or
space-efficient than fact (without changing fact2’s source code)? What could you do?

(c) Now consider the following pair of functions:

f(x:Int, acc:Int) : Int { if x > 0 then g(x-1, acc*2) else acc fi };

g(x:Int, acc:Int) : Int { if x > 0 then f(x-1, acc*5) else acc fi };

In this case, the calls to g and f are all tail calls but they are not immediately recursive. Can you
extend you answer to part (b) so that a compiler can use only one or two activation records for a
call to f or g? (Hint: Consider the case when the initial invocation of these functions is via a call to
f and the case when the initial invocation is via a call to g.)

2. Consider the following MIPS assembly code program. Using the code generation rules from lecture, what
source program produces this code?

f_entry:

move $fp $sp

sw $ra 0($sp)

addiu $sp $sp -4

lw $a0 4($fp)

sw $a0 0($sp)

Spring 2018 page 1 of 3

University of Tehran, Compilers Course Mojtahedi

addiu $sp $sp -4

li $a0 0

lw $t1 4($sp)

addiu $sp $sp 4

beq $a0 $t1 true_branch

false_branch:

lw $a0 4($fp)

sw $a0 0($sp)

addiu $sp $sp -4

sw $fp 0($sp)

addiu $sp $sp -4

lw $a0 4($fp)

sw $a0 0($sp)

addiu $sp $sp -4

li $a0 1

lw $t1 4($sp)

sub $a0 $t1 $a0

addiu $sp $sp 4

sw $a0 0($sp)

addiu $sp $sp -4

jal f_entry

lw $t1 4($sp)

add $a0 $a0 $t1

addiu $sp $sp 4

b end_if

true_branch:

li $a0 0

end_if:

lw $ra 4($sp)

addiu $sp $sp 12

lw $fp 0($sp)

jr $ra

3. Give a recursive definition of the cgen function (as given in slide 52 in the lecture notes) for the following
new construct.

for i = e1 to e2 by e3 do e4

Assume that the subexpressions e1, e2, e3 and e4 are integer-valued. A “for loop” expression is evaluated
according to the following rules. The first three subexpressions are evaluated once at the start of the loop
in the order e1, e2, and then e3. The subexpression e4 is evaluated once per iteration of the loop. The
index variable i is initialized to the value of e1. The loop bound is the value of e2 and i is incremented
by the value of e3 after each iteration. The loop terminates before executing an iteration where the value
of i is greater than the loop bound. The value returned by the “for loop” expression is the value of the
expression e4 in the last iteration. If the loop does not execute at all, then the value returned is the
integer 0.

Following is a more formal semantics of the for expression in terms of the Cool expressions.

let t: Int ← e1 in
let bound:Int ← e2 in
let incr:Int ← e3 in
let result:Int ← 0 in
let i:Int ← t in

while (i ≤ bound) loop {

Spring 2018 page 2 of 3

University of Tehran, Compilers Course Mojtahedi

result ← e4;
i ← i + incr;

} pool;
result

Note that the expressions e1, e2 and e3 are evaluated ONLY once before the start of the loop. Also note
that any occurences of variable i in e1, e2 and e3 refer to the value of i just before the for loop. Any
occurrence of variable i in expression e4 refers to the loop index variable i.

Spring 2018 page 3 of 3

University of Tehran, Compilers Course Mojtahedi

Solutions to Written Assignment 6

1. (a) Here is a tail-recursive function that computes factorial:

fact2(n:Int, acc:Int) : Int { if n > 0 then fact2(n-1, n*acc) else acc fi };

Here fact2(n, 1) = n!. Alternately, if you wanted fact2 to have only one parameter, you could
have named the above function fact3 and defined fact2(n:Int) : Int { fact3(n,1) };

(b) If we trace out the execution of fact and fact2 computing 4!, we see that they both require at
most five activation records on the stack. Below we show the stack during the evaluation of the last
recursive call:

AR for fact(4) AR for fact2(4, 1)

AR for fact(3) AR for fact2(3, 4)

AR for fact(2) AR for fact2(2, 12)

AR for fact(1) AR for fact2(1, 24)

AR for fact(0) AR for fact2(0, 24)

For fact, before a new activation record is pushed onto the stack we do one subtraction (decrease n
by one). Just before we remove an activation record from the stack (i.e., just before we return) we
do one multiplication (multiply n*fact(n-1)). For fact2, we do the subtraction and multiplication
before each new record is pushed onto the stack. When we remove an activation record from the
stack all we do is take the result of the recursive call to fact2 and return it. Thus the only part of
the stack frame for fact2 we are using after a recursive call is the return address.

We can implement fact2 more efficiently by reusing the same activation record for a recursive call,
rather than pushing a new record on the stack. To recursively call fact2, we compute new values
for n and a in temporary space, then to do the function call we replace n and a on the stack with
their new values and restart fact2.

On the MIPS architecture, there are at least two ways to re-enter fact2. One choice is to retrieve
the return address from the stack, store it in $ra, pop everything except the parameters off the stack,
and then unconditionally jump to fact2’s entry point (we don’t want to clobber $ra).

Another choice is to notice that the correct frame pointer and return address are already on the
stack, and so we pop everything up to the return address off the stack, and then unconditionally
jump just past fact2’s entry point to skip the initial set-up code.

In either case, no new space is required. With our new implementation, fact2(n) runs in constant
space for any n, whereas fact(n) requires O(n) space.

For mutually tail-recursive f and g we need to be a little more careful than in part (b). In this case,
f and g have the same number of arguments, so we could compile f and g into a single block of code
with two entry points f and g. Then a function h that calls either f or g pushes two arguments
onto the stack, stores the return address in $ra (on MIPS) and then jumps to either f or g. f or
g modifies the arguments appropriately and then jumps to the other function (using one of the two
strategies described above), or returns acc in the base case.

In general, however, f and g might have different signatures (e.g., take different numbers of param-
eters) but still be mutually tail-recursive, so we need a more general strategy.

To implement a general tail call to some function h we need to replace the current activation record
with a new activation record that is correctly layed out for h. As before we compute the arguments
to h in temporary space. Then we retreive the return address from the stack (on the MIPS we store
it in $ra). Finally we overwrite the current activation record with the new parameters, shifting the
stack pointer just past the last new parameter, and jump unconditionally to h.

2. The program that generates this code is

def f(n) = if n=0 then 0 else n+f(n-1)

Spring 2018 page 1 of 2

University of Tehran, Compilers Course Mojtahedi

3. cgen(for i = e1 to e2 by e3 do e4, nt) =

cgen(e1, nt)

sw $a0 -nt*4($fp)

cgen(e2, nt+1)

sw $a0 -(nt+1)*4($fp)

cgen(e3, nt+2)

sw $a0 -(nt+2)*4($fp)

li $a0 0

sw $a0 -(nt+3)*4($fp)

ld $a0 -nt*4($fp)

loop: ld $t1 -(nt+1)*4($fp)

bg $a0 $t1 finish

cgen(e4, nt+4)

sw $a0 -(nt+3)*4($fp)

ld $a0 -nt($fp)

ld $t1 -(nt+2)*4($fp)

add $a0 $a0 $t1

sw $a0 -nt*4($fp)

j loop

finish: ld $a0 -(nt+3)*4($fp)

Note that we assume that nt starts at 1 (at the beginning of a method) and increases by 1 for each
temporary allocated (at the recursive cgen calls). In lecture, we started at 4 and incremented by 4 for
each temporary allocated, but we do not multiply by 4 when computing the address of each temporary.

Spring 2018 page 2 of 2

University of Tehran, Compilers Course Mojtahedi

Written Assignment 7

Due ??

This assignment asks you to prepare written answers to questions on object layout and operational
semantics. Each of the questions has a short answer. You may discuss this assignment with other students
and work on the problems together. However, your write-up should be your own individual work.

1. Consider the following Cool classes:

class A {

attr1 : Int;

attr2 : Int;

method1() : Object { ... };

method2() : Object { ... };

};

class B inherits A {

attr3 : Int;

method1() : Object { ... };

method3() : Object { ... };

};

(a) Draw a diagram that illustrates the layout of objects of type A and B, including their dispatch tables.

(b) Let obj be a variable whose static type is A. Assume that obj is stored in register $a0. Write MIPS
code for the function invocation obj.method2(). You may use temporary registers such as $t0 if
you wish.

(c) Explain what happens in part (b) if obj has dynamic type B.

2. Suppose you wish to add arrays to Cool using the following syntax:

let a:T[e1] in e2 Create an array a with size e1 of T ’s, usable in e2
a[e1] <- e2 Assign e2 to element e1 in a
a[e] Get element e of a

Write the operational semantics for these three syntactic constructs. You may find it helpful to think of
an array of type T [n] as an object with n attributes of type T .

Spring 2018 page 1 of 2

University of Tehran, Compilers Course Mojtahedi

3. The operational semantics for Cool’s while expression show that result of evaluating such an expression
is always void. (See page 28 of the Cool manual.)

However, we could have used the following alternative semantics:

• If the loop body executes at least once, the result of the while expression is the result from the last
iteration of the loop body.

• If the loop body never executes (i.e., the condition is false the first time it is evaluated), then the
result of the while expression is void.

For example, consider the following expression:

while (x < 10) loop x <- x+1 pool

The result of this expression would be 10 if x < 10 or void if x ≥ 10.

Write new operational rules for the while construct that formalize these alternative semantics.

Spring 2018 page 2 of 2

University of Tehran, Compilers Course Mojtahedi

Solutions to Written Assignment 7

1. (a) The following diagram illustrates objects of type A and B along with their dispatch tables.

class tag for {\tt A}

object size

attr1

attr2

dispatch ptr

Object.abort

Object.type\name

Object.copy

A.method1

A.method2

{\bf object of type {\tt A}} {\bf dispatch table for class {\tt A}}

class tag for {\tt B}

object size

attr1

dispatch ptr

Object.abort

Object.type\name

Object.copy

B.method1

A.method2

{\bf object of type {\tt B}} {\bf dispatch table for class {\tt B}}

attr2

attr3 B.method3

(b) Note that we assume the existence of a label called dispatch error that handles the case where $a0
is null.

beq $a0 $zero dispatch_error # check for null obj

lw $t0 8($a0) # load dispatch pointer

lw $t0 16($t0) # load method2 ptr from table

jalr $t0 # jump to method

(c) If obj has dynamic type B, then we correctly invoke method2 on the object. All objects have a
dispatch pointer at offset 8, so we correctly fetch the dispatch pointer. Furthermore, all classes that
inherit from class A will have a pointer to the appropriate version of method2 at offset 16 of their
dispatch table. In this case, we will call the version of method2 supplied by class A, since class B did
not override it.

Note that it is legal to pass an object of type B as the self object, since the layout of A is a prefix
of the layout of B.

2. These rules treat arrays as objects with n attributes, all of type T . For convenience, arrays are indexed
from 1 to n, rather than 0 to n− 1.

Spring 2018 page 1 of 2

University of Tehran, Compilers Course Mojtahedi

T =

{
X if T0 = SELF TYPE and so = X(. . .)
T0 otherwise

so, S1, E1 ⊢ e1 : Int(n), S2

li = newloc(S2) for i = 0 . . . n and each li is distinct
va = array(a1 : l1, . . . , an : ln)
S3 = S2[va/l0, DT /l1, . . . , DT /ln]
E2 = E1[l0/a]
so, S3, E2 ⊢ e2 : v2, S4

so, S1, E1 ⊢ let a : T0[e1] in e2 : v2, S4
[Array-Let]

DT is just the default value for objects of type T (e.g., 0 for Ints and void for most objects).

so, S1, E ⊢ e1 : Int(m), S2

so, S2, E ⊢ e2 : v2, S3

E(a) = la
S2(la) = va
va = array(a1 : l1, . . . , an : ln)
1 ≤ m ≤ n
S4 = S3[v2/lm]

so, S1, E ⊢ a[e1] <- e2 : v2, S4
[Array-Assign]

so, S1, E ⊢ e1 : Int(m), S2

E(a) = la
S2(la) = va
va = array(a1 : l1, . . . , an : ln)
1 ≤ m ≤ n
v = S2(lm)

so, S1, E ⊢ a[e] : v, S2
[Array-Lookup]

3. Here’s one way to do it. This approach literally checks if this is the last time around the loop or not, and
behaves accordingly. We also use the old false rule to handle loops where e1 is never true.

so, S1, E ⊢ e1 : Bool(false), S2

so, S1, E ⊢ while e1 loop e2 pool : void, S2
[Loop-False]

so, S1, E ⊢ e1 : Bool(true), S2

so, S2, E ⊢ e2 : v2, S3

so, S3, E ⊢ e1 : Bool(false), S4

so, S1, E ⊢ while e1 loop e2 pool : v2, S4
[Loop-True-Last]

so, S1, E ⊢ e1 : Bool(true), S2

so, S2, E ⊢ e2 : v2, S3

so, S3, E ⊢ e1 : Bool(true), Speek

so, S3, E ⊢ while e1 loop e2 pool : v3, S4

so, S1, E ⊢ while e1 loop e2 pool : v3, S4
[Loop-True-Not-Last]

Note that Speek is just thrown away; we’re just using it to make sure that this isn’t the last time around
the loop.

On a real machine, we can’t usually throw away a store like this; this solution is a good example of
operationaly semantics being more powerful than we can easily implement. An alternate approach is to
allocate a chunk of memory for the value of the loop expression, and write into it each time we traverse
the loop.

Spring 2018 page 2 of 2

University of Tehran, Compilers Course Mojtahedi

Written Assignment 3

Due ??

This assignment asks you to prepare written answers to questions on type checking, run-time environ-
ments, and code generation. Each of the questions has a short answer. You may discuss this assignment
with other students and work on the problems together. However, your write-up should be your own
individual work.

1. Consider the following class definitions.

class A {

i : Int;

o : Object;

a : A <- new B;

b : B <- new B;

x : SELF_TYPE;

f() : SELF_TYPE { x };

};

class B inherits A {

g(b : Bool) : Object { (* EXPRESSION *) };

};

Assume that the type checker implements the rules described in the lectures and in the Cool Reference
Manual. For each of the following expressions, occurring in place of (* EXPRESSION *) in the body of
the method g, show the static type inferred by the type checker for the expression. If the expression
causes a type error, give a brief explanation of why the appropriate type checking rule for the expression
cannot be applied.

1) i + i

2) x

3) self = x

4) self = i

5) let x : B <- x in x

6) case o of

o : Int => b;

o : Bool => o;

o : Object => true;

esac

7) a.f().g(b)

8) f()

2. Someone has proposed that Cool be extended to allow comparison, addition, and multiplication op-
erations on Bool objects as well as on Int objects. The comparison, addition, and multiplication

Spring 2018 page 1 of 4

University of Tehran, Compilers Course Mojtahedi

operations are now defined for any combination of Int and Bool operands. An addition or multipli-
cation operation involving an operand of type Bool produces a result of type Int (the Bool object is
converted to 1 if it has the value true, and to 0 if it has the value false).

Write the additional type checking rules (as in the lecture and the Cool Reference Manual) for these
operations on Bool objects.

3. (a) Your friend Damon feels constrained by the fact that every while expression in Cool evaluates
to void. He would like to be able to write functions such as this:

f() : Bool {

let x : Bool <- true in

while x loop x <- false pool

};

Damon wants to change the semantics of the while expression so that the value of the expression
is the value of the body on the last execution of the loop. He must define the value of a while

expression in the case that the body of the loop is never evaluated, however.

Damon’s first proposal is to define the value of the while expression to be void when the predicate
of the loop is false initially and the body is never evaluated. He says that the type checker can
now infer the static type of the while expression to be the static type of the body, because void
is a member of every type. Give an example Cool program that shows how this change would
cause a runtime type error (beyond the existing Cool runtime errors), and explain how the error
occurs.

(b) After seeing your example, Damon comes up with a new suggestion. He proposes to eliminate
the requirement that the predicate expression in a loop must be of static type Bool. Now, the
predicate can have any static type, and a new method is true() : Bool is added to the Object
class.

The predicate is evaluated before each iteration of the loop. If the value of the predicate is void,
the loop terminates. Otherwise, the method is true() of the value of the predicate is invoked,
and the loop terminates if the value returned by the method is false. If the value returned by
the method is true, then the body of the loop is evaluated, and the process repeats. The value
of the while expression is determined as follows:

• If the body of the loop is never evaluated, then the value of the while expression is the value
of the predicate (from the first evaluation of the predicate).

• Otherwise, the value of the while expression is the value of the body on the last execution
of the loop.

Can these modified while semantics be type checked statically to accept Damon’s sample function
above, while ensuring type safety (i.e., that no runtime type error will occur)? If so, write the
most flexible type rule (the rule that accepts the most correct programs) for the modified while

expression. If not, explain why not, and give an example Cool program that illustrates how this
expression can introduce new runtime errors (beyond the existing Cool runtime errors).

(c) Damon wants to extend Cool by allowing method assignments. He would like to add a new
assignment expression of the following form.

<exprB>.g <- <exprA>.f

Spring 2018 page 2 of 4

University of Tehran, Compilers Course Mojtahedi

Suppose that <exprA> evaluates to an object a of class A, and <exprB> evaluates to an object
b of class B. Furthermore, A has a method named f and B has a method named g, and the two
methods f and g have the same signature (the signature consists of the number of arguments, the
types of the formal parameters, and the return type). The effect of the assignment would be to
set the body of the method g of the object b to the body of the method f of the object a, so that
subsequent invocations of the method g belonging to b would execute the body of the method f

belonging to a. The value of the assignment expression would be void.

Damon says that, if B is a subclass of A (a descendant of A in the inheritance graph), then the
inheritance rules of Cool guarantee that this operation is type safe.

Can Damon’s method assignment expression be type checked statically to guarantee type safety?
If so, write the most flexible type rule for the method assignment expression. If not, explain why
not, and give an example Cool program that illustrates how this expression can introduce new
runtime errors (beyond the existing Cool runtime errors).

4. Suppose f is a function with a call to g somewhere in the body of f.

f(...) {

... g(...) ...

}

We say that this particular call to g is a tail call if the call is the last thing f does before returning.
For example, consider the following two functions for computing positive powers of 2.

f(x : Int, acc : Int) : Int { if (0 < x) then f(x - 1, acc * 2) else acc fi };

g(x : Int) : Int { if (0 < x) then (2 * g(x - 1)) else 1 fi };

Here f(x, 1) = g(x) = 2x for x ≥ 0. The recursive call to f is a tail call, while the recursive call to
g is not. A function in which all recursive calls are tail calls is called tail recursive.

(a) Here is a non-tail recursive function for computing factorials.

fact(n : Int) : Int { if (0 < n) then (n * fact(n - 1)) else 1 fi };

Write a tail recursive function fact2 that computes the same result. (Hint: Your function will
most likely need two arguments, or it may need to invoke a function of two arguments.)

(b) Recall from lecture that function calls are usually implemented using a stack of activation records.
Trace through the execution of fact and fact2 as they compute 4!, showing the tree of activation
records (each node of the tree shows the invocation of a function, and the arguments). How can
a compiler make the execution of the tail recursive function fact2 more efficient than that of
fact? (Hint: Compare the stack space required for fact(99) with the stack space required for
fact2(99). Can fact2 use fewer activation records?)

5. In some languages, a class can have multiple methods with the same name, as long as these methods
differ in the number and/or types of formal parameters. This is referred to as method overloading.

Suppose we would like to add method overloading to Cool. Now, when generating code for a dispatch
expression e0.f(e1, . . . , en), the compiler may need to choose the method to dispatch to (i.e., which
slot in the dispatch table to jump to) amongst several valid possibilities. Let Ti be the static type of
ei for i = 0, 1, . . . , n. Suppose that the compiler chooses a method f for the dispatch such that:

Spring 2018 page 3 of 4

University of Tehran, Compilers Course Mojtahedi

• T0 has a method f with n formal parameters of types P1, . . . , Pn; and

• Ti ≤ Pi for i = 1, . . . , n; and

• If T0 has more than one method named f , then, for any other method named f with n formal
parameters Q1, . . . , Qn satisfying Ti ≤ Qi for i = 1, . . . , n, it must be the case that Pi ≤ Qi

for i = 1, . . . , n. In other words, P1, . . . , Pn are the most specific parameter types for a method
named f that could be invoked.

If a unique method exists under these rules, then the dispatch is accepted by the type checker. If more
than one method satisfies these conditions, then the type checker signals a type error at compile time.

Method overriding occurs as described in the original Cool Reference Manual. Specifically, a method
defined in a child class overrides any method with the identical signature in the parent class.

Consider the following Cool program:

class A inherits IO {

f(a : Object, b : Object) : Object { out_string("1") };

f(a : Object, b : Int) : Object { out_string("2") };

};

class B inherits A {

f(a : Object, b : Object) : Object { out_string("3") };

f(a : Int, b : Object) : Object { out_string("4") };

};

class Main {

main() : Object {

let a : A <- new B,

b : B <- new B,

x : Object <- new Object,

y : Object <- 1,

z : Int <- 2 in

(* DISPATCH *)

};

};

For each of the following dispatch expressions, give the output of the program when (* DISPATCH *)

is replaced by the dispatch expression, or specify that a type error would occur.

a.f(x, x) b.f(x, x)

a.f(x, y) b.f(x, y)

a.f(x, z) b.f(x, z)

a.f(y, x) b.f(y, x)

a.f(y, y) b.f(y, y)

a.f(y, z) b.f(y, z)

a.f(z, x) b.f(z, x)

a.f(z, y) b.f(z, y)

a.f(z, z) b.f(z, z)

Spring 2018 page 4 of 4

University of Tehran, Compilers Course Mojtahedi

Solutions to Written Assignment 3

1. Consider the following class definitions.

class A {

i : Int;

o : Object;

a : A <- new B;

b : B <- new B;

x : SELF_TYPE;

f() : SELF_TYPE { x };

};

class B inherits A {

g(b : Bool) : Object { (* EXPRESSION *) };

};

Assume that the type checker implements the rules described in the lectures and in the Cool Reference
Manual. For each of the following expressions, occurring in place of (* EXPRESSION *) in the body of
the method g, show the static type inferred by the type checker for the expression. If the expression
causes a type error, give a brief explanation of why the appropriate type checking rule for the expression
cannot be applied.

1) i + i

Int

2) x

SELF TYPEB

3) self = x

Bool

4) self = i

Error: Int objects can only be compared with other Int objects

5) let x : B <- x in x

B

6) case o of

o : Int => b;

o : Bool => o;

o : Object => true;

esac

Bool

7) a.f().g(b)

Error: The class A does not have a method named g

8) f()

SELF TYPEB

Spring 2018 page 1 of 8

University of Tehran, Compilers Course Mojtahedi

2. Someone has proposed that Cool be extended to allow comparison, addition, and multiplication op-
erations on Bool objects as well as on Int objects. The comparison, addition, and multiplication
operations are now defined for any combination of Int and Bool operands. An addition or multipli-
cation operation involving an operand of type Bool produces a result of type Int (the Bool object is
converted to 1 if it has the value true, and to 0 if it has the value false).

Write the additional type checking rules (as in the lecture and the Cool Reference Manual) for these
operations on Bool objects.

The original type checking rule for arithmetic operations remains the same for subtraction and division.

O,M,C ⊢ e1 : Int
O,M,C ⊢ e2 : Int
op ∈ {−, /}

O,M,C ⊢ e1 op e2 : Int

[Arith]

A new rule is added for addition and multiplication.

O,M,C ⊢ e1 : T1

O,M,C ⊢ e2 : T2

T1 ∈ {Int,Bool}
T2 ∈ {Int,Bool}
op ∈ {∗,+}

O,M,C ⊢ e1 op e2 : Int

[Add-Mul]

The rule for non-equality comparisons must be extended to allow for Bool operands.

O,M,C ⊢ e1 : T1

O,M,C ⊢ e2 : T2

T1 ∈ {Int,Bool}
T2 ∈ {Int,Bool}
op ∈ {<,≤}

O,M,C ⊢ e1 op e2 : Bool

[Compare]

The rule for equality comparisons must be changed to allow for comparisons between Int and Bool

operands.

O,M,C ⊢ e1 : T1

O,M,C ⊢ e2 : T2

T1 = String ∨ T2 = String ⇒ T1 = T2

T1 ∈ {Int,Bool} ⇒ T2 ∈ {Int,Bool}
T2 ∈ {Int,Bool} ⇒ T1 ∈ {Int,Bool}

O,M,C ⊢ e1 = e2 : Bool

[Equal]

3. (a) Your friend Damon feels constrained by the fact that every while expression in Cool evaluates
to void. He would like to be able to write functions such as this:

Spring 2018 page 2 of 8

University of Tehran, Compilers Course Mojtahedi

f() : Bool {

let x : Bool <- true in

while x loop x <- false pool

};

Damon wants to change the semantics of the while expression so that the value of the expression
is the value of the body on the last execution of the loop. He must define the value of a while

expression in the case that the body of the loop is never evaluated, however.

Damon’s first proposal is to define the value of the while expression to be void when the predicate
of the loop is false initially and the body is never evaluated. He says that the type checker can
now infer the static type of the while expression to be the static type of the body, because void
is a member of every type. Give an example Cool program that shows how this change would
cause a runtime type error (beyond the existing Cool runtime errors), and explain how the error
occurs.

class Main {

main() : Int {

5 + while false loop 7 pool

};

};

Under the proposed semantics, this program would be accepted by the type checker because the
type checker infers the static type Int for the while expression. At runtime, however, the while
expression evaluates to void, and so an integer is added to void. The result of this addition is
undefined, as under the standard definition of Cool an expression whose static type is Int cannot
take the value void at runtime. As such, a new runtime error is introduced into Cool.

(b) After seeing your example, Damon comes up with a new suggestion. He proposes to eliminate
the requirement that the predicate expression in a loop must be of static type Bool. Now, the
predicate can have any static type, and a new method is true() : Bool is added to the Object
class.

The predicate is evaluated before each iteration of the loop. If the value of the predicate is void,
the loop terminates. Otherwise, the method is true() of the value of the predicate is invoked,
and the loop terminates if the value returned by the method is false. If the value returned by
the method is true, then the body of the loop is evaluated, and the process repeats. The value
of the while expression is determined as follows:

• If the body of the loop is never evaluated, then the value of the while expression is the value
of the predicate (from the first evaluation of the predicate).

• Otherwise, the value of the while expression is the value of the body on the last execution
of the loop.

Can these modified while semantics be type checked statically to accept Damon’s sample function
above, while ensuring type safety (i.e., that no runtime type error will occur)? If so, write the
most flexible type rule (the rule that accepts the most correct programs) for the modified while

expression. If not, explain why not, and give an example Cool program that illustrates how this
expression can introduce new runtime errors (beyond the existing Cool runtime errors).

Spring 2018 page 3 of 8

University of Tehran, Compilers Course Mojtahedi

O,M,C ⊢ e1 : T1

O,M,C ⊢ e2 : T2

O,M,C ⊢ while e1 loop e2 pool : T1 ⊔ T2

[Loop]

Under this type rule, the basic types Int, String, and Bool will be inferred by the type checker
for a while expression only if the type checker infers the same basic type for both the predicate
and the body of the loop. The existing rules of Cool do not allow an expression with static type
Int, String, or Bool to take the value void at runtime. As a result, a while expression for which
the type checker infers one of the static types Int, String, or Bool will not evaluate to void.
The only runtime errors caused by the while expression are the runtime errors due to void that
already exist in Cool.

(c) Damon wants to extend Cool by allowing method assignments. He would like to add a new
assignment expression of the following form.

<exprB>.g <- <exprA>.f

Suppose that <exprA> evaluates to an object a of class A, and <exprB> evaluates to an object
b of class B. Furthermore, A has a method named f and B has a method named g, and the two
methods f and g have the same signature (the signature consists of the number of arguments, the
types of the formal parameters, and the return type). The effect of the assignment would be to
set the body of the method g of the object b to the body of the method f of the object a, so that
subsequent invocations of the method g belonging to b would execute the body of the method f

belonging to a. The value of the assignment expression would be void.

Damon says that, if B is a subclass of A (a descendant of A in the inheritance graph), then the
inheritance rules of Cool guarantee that this operation is type safe.

Can Damon’s method assignment expression be type checked statically to guarantee type safety?
If so, write the most flexible type rule for the method assignment expression. If not, explain why
not, and give an example Cool program that illustrates how this expression can introduce new
runtime errors (beyond the existing Cool runtime errors).

This method assignment expression cannot be type checked statically while ensuring type safety
because the dynamic types of the objects involved in the assignment may be different from the
static types. The type checker cannot guarantee at compile time that the dynamic type of the
object to which the method is being assigned is a subclass of the dynamic type of the object that
contains the method being assigned.

class A {

x : Int;

f(z : Int) : Int {

z + x

};

};

class B inherits A {

y : Int;

f(z : Int) : Int {

z + x + y

};

};

Spring 2018 page 4 of 8

University of Tehran, Compilers Course Mojtahedi

class Main {

main() : Object {

let a : A <- new A,

b : A <- new B in {

a.f <- b.f;

a.f(1);

}

};

};

Any static type rule for the method assignment expression would have to allow the method
assignment a.f <- b.f in this program, because the static types of a and b are the same.
However, executing this program would lead to a runtime error because the object a does not
have an attribute y.

4. Suppose f is a function with a call to g somewhere in the body of f.

f(...) {

... g(...) ...

}

We say that this particular call to g is a tail call if the call is the last thing f does before returning.
For example, consider the following two functions for computing positive powers of 2.

f(x : Int, acc : Int) : Int { if (0 < x) then f(x - 1, acc * 2) else acc fi };

g(x : Int) : Int { if (0 < x) then (2 * g(x - 1)) else 1 fi };

Here f(x, 1) = g(x) = 2x for x ≥ 0. The recursive call to f is a tail call, while the recursive call to
g is not. A function in which all recursive calls are tail calls is called tail recursive.

(a) Here is a non-tail recursive function for computing factorials.

fact(n : Int) : Int { if (0 < n) then (n * fact(n - 1)) else 1 fi };

Write a tail recursive function fact2 that computes the same result. (Hint: Your function will
most likely need two arguments, or it may need to invoke a function of two arguments.)

fact2(n : Int, acc : Int) : Int {

if (n = 0)

then acc

else fact2(n - 1, acc * n)

fi

};

(b) Recall from lecture that function calls are usually implemented using a stack of activation records.
Trace through the execution of fact and fact2 as they compute 4!, showing the tree of activation
records (each node of the tree shows the invocation of a function, and the arguments). How can
a compiler make the execution of the tail recursive function fact2 more efficient than that of
fact? (Hint: Compare the stack space required for fact(99) with the stack space required for
fact2(99). Can fact2 use fewer activation records?)

Spring 2018 page 5 of 8

University of Tehran, Compilers Course Mojtahedi

The function invocations, with arguments, are as follows.

fact(4) → fact(3) → fact(2) → fact(1) → fact(0)

fact2(4, 1) → fact2(3, 4) → fact2(2, 12) → fact2(1, 24) → fact2(0, 24)

A compiler can compile a tail recursive function such as fact2 so that a new activation record is
not needed for every recursive invocation of fact2 in a computation. Suppose that the method
fact2 is invoked with the arguments 4 and 1 from a function main. The return address in the
activation record for this invocation is an address R that specifies an instruction in the body of
main.

Since fact2 is tail recursive, after the recursive invocation of fact2 with the arguments 3 and
4 has completed, no further computation must be done in the body of fact2 to complete the
invocation fact2(4, 1). The return value of fact2(3, 4) is the return value of fact2(4, 1).
As a result, the compiler can replace the activation record for fact2(4, 1) with the activation
record for fact2(3, 4). The return address for fact2(3, 4) is the same as the return address
for fact2(4, 1) (R), and the return value of fact2(4, 1) is now set during the execution of
fact2(3, 4). Figure 1 illustrates the stack space saved by this compiler optimization, showing
the activation records during the invocation fact2(3, 4).

(result)

3

4

(*)

main

(result)

R

3

4

main

(result)

4

1

R

fact2 fact2 fact2

OptimizedUnoptimized

Figure 1: Activation records during the function invocation fact2(3, 4).

5. In some languages, a class can have multiple methods with the same name, as long as these methods
differ in the number and/or types of formal parameters. This is referred to as method overloading.

Suppose we would like to add method overloading to Cool. Now, when generating code for a dispatch
expression e0.f(e1, . . . , en), the compiler may need to choose the method to dispatch to (i.e., which
slot in the dispatch table to jump to) amongst several valid possibilities. Let Ti be the static type of
ei for i = 0, 1, . . . , n. Suppose that the compiler chooses a method f for the dispatch such that:

• T0 has a method f with n formal parameters of types P1, . . . , Pn; and

• Ti ≤ Pi for i = 1, . . . , n; and

• If T0 has more than one method named f , then, for any other method named f with n formal
parameters Q1, . . . , Qn satisfying Ti ≤ Qi for i = 1, . . . , n, it must be the case that Pi ≤ Qi

Spring 2018 page 6 of 8

University of Tehran, Compilers Course Mojtahedi

for i = 1, . . . , n. In other words, P1, . . . , Pn are the most specific parameter types for a method
named f that could be invoked.

If a unique method exists under these rules, then the dispatch is accepted by the type checker. If more
than one method satisfies these conditions, then the type checker signals a type error at compile time.

Method overriding occurs as described in the original Cool Reference Manual. Specifically, a method
defined in a child class overrides any method with the identical signature in the parent class.

Consider the following Cool program:

class A inherits IO {

f(a : Object, b : Object) : Object { out_string("1") }; (* offset 0 *)

f(a : Object, b : Int) : Object { out_string("2") }; (* offset 1 *)

};

class B inherits A {

f(a : Object, b : Object) : Object { out_string("3") }; (* offset 0 *)

f(a : Int, b : Object) : Object { out_string("4") }; (* offset 2 *)

};

class Main {

main() : Object {

let a : A <- new B,

b : B <- new B,

x : Object <- new Object,

y : Object <- 1,

z : Int <- 2 in

(* DISPATCH *)

};

};

For each of the following dispatch expressions, give the output of the program when (* DISPATCH *)

is replaced by the dispatch expression, or specify that a type error would occur.

The compiler chooses an offset in the dispatch table for a method invocation at compile time, based on
the static types of the arguments. When the invocation occurs at runtime, the method that executes is
the method at that offset in the dispatch table. The following table shows the method offset chosen by
the compiler (assuming the offsets are fixed according to the numbers in the comments in the program)
and the output for each of the dispatch expressions.

Spring 2018 page 7 of 8

University of Tehran, Compilers Course Mojtahedi

Dispatch Offset Output

a.f(x, x) 0 3

a.f(x, y) 0 3

a.f(x, z) 1 2

a.f(y, x) 0 3

a.f(y, y) 0 3

a.f(y, z) 1 2

a.f(z, x) 0 3

a.f(z, y) 0 3

a.f(z, z) 1 2

b.f(x, x) 0 3

b.f(x, y) 0 3

b.f(x, z) 1 2

b.f(y, x) 0 3

b.f(y, y) 0 3

b.f(y, z) 1 2

b.f(z, x) 2 4

b.f(z, y) 2 4

b.f(z, z) 1 or 2 TYPE ERROR

Spring 2018 page 8 of 8

